ラクトースオペロン
[Wikipedia|▼Menu]
図1. ラクトースオペロンの概略図。上は負の制御、下は正の制御時。
1:RNAポリメラーゼ、2:lac リプレッサー、3:プロモーター、4:オペレーター、5:ラクトース、6: lacZ、7: lacY、8: lacA.

ラクトースオペロン(lactose operon)とは、 ラクトース (乳糖 lactose)分解に関与する一連の遺伝子の集合オペロンで、リプレッサーオペレーターにより 転写が支配されている。lac オペロン lac operon とも表記する。lac はラックと読む。

1961年のフランソワ・ジャコブジャック・モノーによる大腸菌のラクトースオペロンに関する研究と、その際に提唱されたオペロン説は、遺伝子発現の調節に関する研究の大きな転換点となった。
ラクトースオペロンの構造

オペロンには、タンパク質をコードした構造遺伝子 structural gene およびそれらの発現を制御する 調節遺伝子 regulator gene があるが、このページではその例の一つを解説する。ラクトースオペロンはlacZYAともいわれるが、これはラクトースオペロンがラクトース代謝系の3つの構造遺伝子lacZ、lacY、lacAから構成されているためである。

lacZ:β-ガラクトシダーゼ beta-galactosidase ( ⇒EC 3.2.1.23, ⇒反応)(LacZ)をコードする遺伝子である。β-ガラクトシダーゼの活性型は約500 kDa四量体の酵素である。この酵素は二単糖のβ-ガラクトシドを単糖に分解する。たとえば、ラクトースはグルコースガラクトースに分解される[注釈 1]。詳細は「LacZ」を参照

lacY:β-ガラクトシドパーミアーゼ galactoside permease (LacY)をコードする遺伝子である。β-ガラクトシドパーミアーゼは30 kDaの膜結合性タンパク質で、膜輸送系を構成する。β-ガラクトシドを細胞内に取り込む。

lacA:ガラクトシドアセチルトランスフェラーゼ galactoside transacetylase (トランスアセチラーゼとも)( ⇒EC 2.3.1.18, ⇒反応)(LacA)をコードする遺伝子である。ガラクトシドアセチルトランスフェラーゼはアセチルCoAからβ-ガラクトシドの6位の炭素にアセチル基を転移させる酵素である。ラクトース代謝における役割ははっきりしていないが、β-ガラクトシドパーミアーゼの運搬に紛れ込む別の物質を無毒化するらしい[1]。通常の遺伝子の開始コドンはAUGであるが、lacAの開始コドンはUUGである。ただし、通常の原核生物の開始コドンと同様にN-ホルミルメチオニン残基を指定している。

この3つの遺伝子はひとかたまりの転写単位であるオペロンとして丸ごと転写されるポリシストロニック・オペロンを形成しており、一つの伝令RNA(mRNA)中に3つの遺伝子に由来する配列を含む。一本のmRNA中のコーディング領域はそれぞれシストロン cistron と呼ばれ、ラクトースオペロン中のシストロンは(ほかのオペロン同様に)、別々に翻訳される。

一方、転写頻度を決定する調節遺伝子はlacP(プロモーター配列)、lacO(オペレーター配列)とプロモータ上流に存在するCAP結合部位の三つである。一般に、オペロンの制御様式は2つに分けられる。転写されないようにする負の制御と転写を促進する正の制御で、関与するタンパク質もそれぞれリプレッサーとアクチベーターと異なっている。ラクトースオペロンのリプレッサーはlac リプレッサー(LacI)でlacIにコードされており、オペレーター配列に結合する。転写を始めるRNAポリメラーゼはプロモーターに結合する必要があり、lac リプレッサーはこれを妨害することで負の制御をおこなっている。一方、アクチベーターはCAP-cAMP複合体であり、プロモーター上流のCAP結合部位に結合することにより、RNAポリメラーゼのプロモーターへの結合を促進する。なお、通常の遺伝子の開始コドンはAUGであるが、lacIの開始コドンはGUGである。

図2. 左のPromoter:lacI のプロモーター、lacI :lac リプレッサーの遺伝子、左のTerminator:lacI のターミネーター(転写を終了させる配列)、右のPromoter:ラクトースオペロンのプロモーター、Operator:ラクトースオペロンのオペレーター、lacZ、lacY、lacA、右のTerminator:ラクトースオペロンのターミネーター

大腸菌の主な炭素源はグルコースである。しかし、グルコースが欠乏する場合は、普段代謝しないラクトースを利用する。そんな事態の対処としてlacオペロンを転写翻訳させるための負と正の制御系が存在する。
負の制御図3. LacI 二量体の結晶構造。2つの単量体(赤と青)は調節部位(Regulatory domain)を持ち、オペレーターに結合することで負の制御をする。それぞれDNA結合用(DNA-binding domain)とコアとなるドメインを持ち、互いに鎖部分(Linker)でつながっている。四量体化させるC末端ヘリックス(Tetramerization region)は表示していない。lac リプレッサーLacIはONPF(緑)とオペレーター(Operator DNA:金色)とで複合体を成している。図4. DNAに結合した四量体lac リプレッサーLacIの構造予測。2つの二量体(赤と青および緑と橙)はそれぞれ異なるオペレーター(Two operator DNA sequences bound)に結合する。また、四量体化領域(Tetramerization region)により2つは組み合う。これにより、四量体lac リプレッサーはDNAを歪め、ループを形成する。

負の制御 negative control とは、遺伝子が転写されないよう抑制 repress する機構である。ラクトースオペロンの場合、lacI 遺伝子 lacI gene のコードするlac リプレッサー lac repressor (LacI)というタンパク質が担う。また、ラクトースとその変異体といった種々の糖質もカタボライト抑制を行う。
lac リプレッサー

lac リプレッサー(LacI)は38 kDaの同じポリペプチドからなる四量体[2]で、機能的には2つの二量体である。構成単位の単量体については、1?59番のアミノ酸はヘッドピース headpiece と呼ばれるDNA結合ドメインであり、残りの部分はコアという。ヘッドピースはトリプシン消化で切り離すことができる[3]。N末端(アミノ末端)のDNA結合モチーフヘリックスターンヘリックスだ。コアはコアドメイン1と2に分かれ、どちらも共通の構造を持つ。それは、両側を2つずつのαヘリックスに挟まれた、6枚の並んだβシートである[3]。この領域はコアドメイン1と2で活性化因子を挟み込むためのくぼみを作る。結合の意味は#アロステリック調節の項で紹介する。C末端(カルボキシル末端)には7残基離れた2つのロイシン反復配列を含むαヘスがある[3]。これはオリゴマー形成ドメインで、4つの単量体が集結する際に結合させ合う。

二量体について説明する。コアのN末端側部分、活性化因子がはまり込むくぼみの縁部分、疎水性コアドメインの各結合で接触を保つ[3]。互いのC末端領域は平行になるよう突き出す[3]。反対側でヘッドピースは集まっている[3]。二量体が2つ出会い、四量体を形成するが、そのとき結合させるのがC末端のαヘリックスの束だ。

lac リプレッサーLacIはプロモーターの下流すぐにあるlac オペレーター operator (lacO)に結合する。オペレーターには主力と補助が存在し、2つのサブユニットが同時に結合することでDNAをより強力に捉える。抑制がより効果的なものにする。間のDNA領域はループ形成 DNA looping する[4][5]。この状態が負の制御で、RNAポリメラーゼがDNAを解くのを妨げる[1]

lac リプレッサーLacIはどのようにオペレーターを探し出すのだろうか。答えは強力な特異的結合能で、ほかのDNA部位に比べてオペレーター部位には4×106倍強く結合する[6]。結合の速度定数も約1010 M-1 s-1と極めて速く、対して解離定数は約10-13 Mと低い[6]。まず適当にDNAへ漂着したあと、それに沿って移動しながら強く引きつくオペレーター部位を探す。

オペレーターは3つで、転写開始部位付近の主力O1(+11位付近)とそれの上流下流に一つずつ補助O2(+412位付近)、O3(-82位付近)がある。O2の位置はlacZ 内だ[4]


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:55 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef