モット絶縁体
[Wikipedia|▼Menu]
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

この記事は検証可能参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方
出典検索?: "モット絶縁体" ? ニュース ・ 書籍 ・ スカラー ・ CiNii ・ J-STAGE ・ NDL ・ dlib.jp ・ ジャパンサーチ ・ TWL(2017年6月)

モット絶縁体 (Mott-insulator) とは、バンド理論では金属的と予想されるにもかかわらず、電子間斥力の効果(電子相関効果)によって実現している絶縁体状態のことである。

バンド理論によれば、単位胞あたりの電子数が奇数の場合は、バンドの電子占有は半分であり、全占有もしくは無占有ではないので、電気伝導性(=金属的)を示すはずである。しかし実際には単位胞あたりの電子数が奇数となる化合物の中には金属的な電気伝導を示さず、絶縁体となるものが存在する。これらの絶縁体基底状態電子相関に起因するものであることを指摘したのがモットパイエルスである。

モットが指摘したこの転移は、絶縁相に関して磁性の状態は仮定されていないが、現実の「モット絶縁体」では反強磁性を示すなど磁性状態になる。

なお、このような物質へ電子(もしくは正孔)を加えると、それは自由に動き、電気伝導性を示すと予想される(ただし原子の位置にランダム的ポテンシャルを有すると、束縛効果を生じ、自由に動けない)。
モット絶縁体の例
ReNiO3

モット絶縁体の例として ReNiO3 が挙げられる[1]。ここで Re には希土類元素が入る。ReNiO3 はペロブスカイト構造をとる遷移金属酸化物である。

低温では価電子Ni サイトに局在している。しかし温度が上昇すると Re のイオン半径が増加するため、結晶構造に歪みが生じる。これにより、Ni サイトに局在していた電子が波動性を回復して結晶全体に広がり、金属に転移する。

Re が Pr(プラセオジム)または Nd(ネオジム)の場合、低温の絶縁体相は同時に反強磁性を示す。
二硫化タンタル

二硫化タンタルTaS2は絶縁体であるが、走査型トンネル顕微鏡を駆使して、モット絶縁体である旨が確認された[2]。二硫化タンタルでは、原子配列構造の一周期に13という奇数個の電子が含まれている。
Sr2IrO4

5d遷移金属酸化物Sr2IrO4はスピン軌道相互作用によって誘起されるモット絶縁体であることが確認された。[3][4]
脚注^ Klein, Yannick Maximilian; Koz?owski, Miros?aw; Linden, Anthony; Lacorre, Philippe; Medarde, Marisa; Gawryluk, Dariusz Jakub (2021-07-07). “RENiO3 Single Crystals (RE = Nd, Sm, Gd, Dy, Y, Ho, Er, Lu) Grown from Molten Salts under 2000 bar of Oxygen Gas Pressure”. Crystal Growth & Design 21 (7): 4230?4241. doi:10.1021/acs.cgd.1c00474. .mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation.cs-ja1 q,.mw-parser-output .citation.cs-ja2 q{quotes:"「""」""『""』"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free a,.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited a,.mw-parser-output .id-lock-registration a,.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription a,.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:#d33}.mw-parser-output .cs1-visible-error{color:#d33}.mw-parser-output .cs1-maint{display:none;color:#3a3;margin-left:0.3em}.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}ISSN 1528-7483. https://doi.org/10.1021/acs.cgd.1c00474. 
^ Butler, C. J.; Yoshida, M.; Hanaguri, T.; Iwasa, Y. (2020-05-18). “Mottness versus unit-cell doubling as the driver of the insulating state in 1T-TaS2” (英語). Nature Communications 11 (1): 2477. doi:10.1038/s41467-020-16132-9. ISSN 2041-1723. https://www.nature.com/articles/s41467-020-16132-9. 
^ Kim, B. J.; Jin, Hosub; Moon, S. J.; Kim, J.-Y.; Park, B.-G.; Leem, C. S.; Yu, Jaeju; Noh, T. W. et al. (2008-08-15). ⇒“Novel Jeff = 1/2 Mott State Induced by Relativistic Spin-Orbit Coupling in Sr2IrO4”. Physical Review Letters 101 (7): 076402. doi:10.1103/PhysRevLett.101.076402. ISSN 0031-9007. ⇒http://arxiv.org/abs/0803.2927
^ mqp_user (2018年9月7日). “ ⇒Sr2IrO4の超交換相互作用”. 大串研究室. 2023年7月27日閲覧。

参考文献

Jordens, Robert; Strohmaier, Niels; Gunter, Kenneth; Moritz, Henning; Esslinger, Tilman (2008). "A Mott insulator of fermionic atoms in an optical lattice". Nature. 455 (7210): 204?207










物性物理学
物質の状態

固体

液体

気体

ボース=アインシュタイン凝縮

フェルミ凝縮

フェルミ気体

フェルミ液体

超固体

超流動

朝永?ラッティンジャー液体

時間結晶

相現象

秩序変数

相転移

電子相

バンド構造

絶縁体

モット絶縁体

半導体

半金属

電気伝導体

超伝導

熱電効果

ゼーベック効果

ペルティエ効果

トムソン効果


圧電効果

強誘電体

スピンギャップレス半導体

電子現象

ホール効果

量子ホール効果


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:18 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef