メンデレビウム
[Wikipedia|▼Menu]

フェルミウム←メンデレビウム→ノーベリウム

Tm

Md

不明








101Md周期表


外見
不明
一般特性
名称, 記号, 番号メンデレビウム, Md, 101
分類アクチノイド
, 周期, ブロックn/a, 7, f
原子量[258]?
電子配置[Rn] 5f13 7s2
電子殻2, 8, 18, 32, 31, 8, 2(画像
物理特性
固体
融点1100 K,?827 °C,?1521 °F
原子特性
酸化数2, 3
電気陰性度1.3(ポーリングの値)
イオン化エネルギー1st: 635 kJ/mol
共有結合半径173 pm
その他
磁性no data
CAS登録番号7440-11-1
主な同位体
詳細はメンデレビウムの同位体を参照

同位体NA半減期DMDE (MeV)DP
257Mdsyn5.52 hε0.406257Fm
α7.558253Es
SF--
258Mdsyn51.5 dε1.230258Fm
260Mdsyn31.8 dSF--
α7.000256Es
ε-260Fm
β-1.000260No

.mw-parser-output .hlist ul,.mw-parser-output .hlist ol{padding-left:0}.mw-parser-output .hlist li,.mw-parser-output .hlist dd,.mw-parser-output .hlist dt{margin-right:0;display:inline-block;white-space:nowrap}.mw-parser-output .hlist dt:after,.mw-parser-output .hlist dd:after,.mw-parser-output .hlist li:after{white-space:normal}.mw-parser-output .hlist li:after,.mw-parser-output .hlist dd:after{content:" ・\a0 ";font-weight:bold}.mw-parser-output .hlist dt:after{content:": "}.mw-parser-output .hlist-pipe dd:after,.mw-parser-output .hlist-pipe li:after{content:" |\a0 ";font-weight:normal}.mw-parser-output .hlist-hyphen dd:after,.mw-parser-output .hlist-hyphen li:after{content:" -\a0 ";font-weight:normal}.mw-parser-output .hlist-comma dd:after,.mw-parser-output .hlist-comma li:after{content:"、";font-weight:normal}.mw-parser-output .hlist-slash dd:after,.mw-parser-output .hlist-slash li:after{content:" /\a0 ";font-weight:normal}.mw-parser-output .hlist dd:last-child:after,.mw-parser-output .hlist dt:last-child:after,.mw-parser-output .hlist li:last-child:after{content:none}.mw-parser-output .hlist dd dd:first-child:before,.mw-parser-output .hlist dd dt:first-child:before,.mw-parser-output .hlist dd li:first-child:before,.mw-parser-output .hlist dt dd:first-child:before,.mw-parser-output .hlist dt dt:first-child:before,.mw-parser-output .hlist dt li:first-child:before,.mw-parser-output .hlist li dd:first-child:before,.mw-parser-output .hlist li dt:first-child:before,.mw-parser-output .hlist li li:first-child:before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child:after,.mw-parser-output .hlist dd dt:last-child:after,.mw-parser-output .hlist dd li:last-child:after,.mw-parser-output .hlist dt dd:last-child:after,.mw-parser-output .hlist dt dt:last-child:after,.mw-parser-output .hlist dt li:last-child:after,.mw-parser-output .hlist li dd:last-child:after,.mw-parser-output .hlist li dt:last-child:after,.mw-parser-output .hlist li li:last-child:after{content:")\a0 ";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li:before{content:" "counter(listitem)" ";white-space:nowrap}.mw-parser-output .hlist dd ol>li:first-child:before,.mw-parser-output .hlist dt ol>li:first-child:before,.mw-parser-output .hlist li ol>li:first-child:before{content:" ("counter(listitem)" "}.mw-parser-output .navbar{display:inline;font-size:75%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}.mw-parser-output .infobox .navbar{font-size:88%}.mw-parser-output .navbox .navbar{display:block;font-size:88%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}

表示

メンデレビウム(: mendelevium [?m?nd??l?vi?m, -?li?vi?m])は、原子番号101の元素元素記号は Md。アクチノイド系列の金属放射性超ウラン元素であり、今日、より軽い元素の中性子の衝突により巨視的量精製することができない元素のうち、原子番号が最も小さい元素である。最後から3番目のアクチノイドであり、9番目の超ウラン元素である。軽い元素に荷電粒子を衝突させることによってのみ、粒子加速器で生成することができる。17個のメンデレビウムの同位体が知られており、最も安定であるのは258Mdで半減期は51日である。しかし、より半減期の短い256Md(半減期1.17時間)はより大規模に生産できるため、化学において最も一般的に使用される。

メンデレビウムは1955年にアインスタイニウムアルファ粒子を衝突させることにより発見された。これは今日でも生産するのに使われる方法と同じである。名前は周期表の父であるドミトリー・メンデレーエフにちなんで名づけられた。使用可能なマイクログラム量の同位体アインスタイニウム253を使用すると、1時間に100万以上のメンデレビウム原子が生成される可能性がある。メンデレビウムの化学的性質は後半のアクチノイドの典型であり、+3の酸化状態が優勢であるが+2もとることができる。知られている全ての同位体は比較的半減期が短い。現在、基礎的な科学研究以外での用途はなく、少量しか生産されていない。
発見カリフォルニア大学バークレー校のローレンス放射線研究所の60インチのサイクロトロン(1939年8月)

メンデレビウムは、合成された9番目の超ウラン元素である。1955年初頭にカリフォルニア大学バークレー校にてアルバート・ギオルソグレン・シーボーグ、Gregory Robert Choppin、Bernard G. Harvey、およびチームリーダーのStanley G. Thompsonにより最初に合成された。チームはローレンス・バークレー国立研究所の60インチのサイクロトロンで10億個(109個)のアインスタイニウム(253Es)のターゲットにアルファ粒子(ヘリウム原子核)を衝突させることでターゲットの原子番号を2大きくし256Md(半減期77分[1])を生成した。これにより256Mdは1つの原子から1ずつ合成された最初の同位体となった。合計で17個のメンデレビウム原子が生成された[2]。この発見は1952年に始まったプルトニウムに中性子を照射してより重いアクチノイドに変えるプログラムの一部であった[3]。それ以前に超ウラン元素を合成するために使用された方法である中性子捕獲は。次の元素であるメンデレビウムを生成するベータ崩壊するフェルミウムの同位体が知られていなかったため上手くいかず、また、258Fm自発核分裂までの半減期は非常に短く、このことが中性子捕獲プロセスの成功を難しくしていたため、この方法が必要であった[1]

映像外部リンク
バークレーにおけるメンデレビウムの発見の再現

メンデレビウムの生成が可能かどうかを予測するために、チームは大まかな計算を行った。生成される原子の数は、ターゲット材料の原子数、ターゲットの断面積、イオンビームの強度、および衝撃時間の積とほぼ等しくなる。この最後の項は生成物の半減期のオーダーの時間で衝突させたときの生成物の半減期に関連していた。これにより1実験ごとに1つの元素が得られることが分かった。よって、最適条件下では、1回の実験で原子番号101の1つの元素が生成されることが期待される。この計算により実験が実行可能であることが示された[2]。ターゲット材料であるアインスタイニウム253はプルトニウムに照射することで簡単に生成することができた。1年間照射することで10億個の原子が得られ、半減期が3週間であることから原子番号101の実験は生成されたアインスタイニウムを分離精製しターゲットを作成した後1週間で行うことができた。しかし、毎秒1014個のアルファ粒子という強度を得るためにサイクロトロンをアップデートする必要があった。そのためシーボーグは資金を申請する必要があった[3]

画像外部リンク
メンデレビウムの発見を証明するスタイラスのトレースとメモを示すデータシート

シーボーグが資金の申請をしている間、Harveyはアインスタイニウムのターゲットに取り組み、ThomsonとChoppinは化学的分離の方法に焦点を合わせ研究した。Choppinは軽いアクチノイドの原子からメンデレビウム原子を分離するためにαヒドロキシイソ酪酸を使用することを提案した[3]。実際の合成はギオルソにより導入された反跳法により行われた。この手法では、アインスタイニウムがビームのターゲットの反対側に配置されたため、反跳するメンデレビウム原子はターゲットを離れ金でできたキャッチャー箔により捕らえられるのに十分な運動量を得る。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:91 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef