マグニチュード
[Wikipedia|▼Menu]
.mw-parser-output .hatnote{margin:0.5em 0;padding:3px 2em;background-color:transparent;border-bottom:1px solid #a2a9b1;font-size:90%}

この項目では、地震のマグニチュードについて記述しています。「magnitude」の語義については、ウィクショナリーの「magnitude」の項目をご覧ください。

この項目では、地震の規模を表す指標全般について説明しています。その他の用法については「マグニチュード (曖昧さ回避)」をご覧ください。

地震のマグニチュード(: Seismic magnitude scales)とは、地震が発するエネルギーの大きさを対数で表した指標値である。揺れの大きさを表す震度とは異なる[1]。日本の地震学者和達清夫の最大震度と震央までの距離を書き込んだ地図[2]に着想を得て、アメリカの地震学者チャールズ・リヒターが考案した[3][4]

この最初に考案されたマグニチュードはローカル・マグニチュード (ML) と呼ばれており、リヒターの名からリヒター・スケール (Richter scale) とも呼称される[注 1]。マグニチュードは地震のエネルギーを1000の平方根を底とした対数で表した数値で、マグニチュードが 1 増えると地震のエネルギーは約31.6倍になり、マグニチュードが 2 増えると地震のエネルギーは1000倍になる。

地震学ではモーメント・マグニチュード (Mw) が広く使われている。日本では気象庁マグニチュード (Mj) が広く使われるが、長周期の波が観測できるような規模の地震(Mj5.0以上)[5]ではモーメント・マグニチュードも解析・公表されている。

一般的にマグニチュードは M = log 10 ⁡ A + B ( Δ , h ) {\displaystyle M=\log _{10}{A}+B(\Delta ,h)}

の形の式で表される。ここで、A はある観測点の振幅、B は震央距離 Δ や震源の深さ h による補正項である[6]
マグニチュードと地震のエネルギー

地震が発するエネルギーの大きさを E(単位:ジュール)、マグニチュードを M とすると、次の関係がある[7]。 log 10 ⁡ E = 4.8 + 1.5 M {\displaystyle \log _{10}E=4.8+1.5M}

この式からマグニチュード M が 1 大きくなると左辺の log10 E が 1.5 増加するからエネルギーは約32倍大きくなる (101.5 = 10√10 ≒ 31.62)。同様にマグニチュードが 2 大きくなるとエネルギーは1000倍になる (101.5×2 = 103 = 1000)。また、マグニチュードで0.2の差はエネルギーでは約2倍の差になる (101.5×0.2 = 100.3 ≒ 1.995)。
マグニチュードの飽和

一般に使われる他の各種のマグニチュードでは、概ね8(表面波マグニチュードで8.5、実体波マグニチュードでは7程度)を超えると数値が頭打ち傾向になる。これを「マグニチュードの飽和」と呼ぶ。例えばローカル・マグニチュード (ML) は約6.5あたりから飽和しはじめ、約7が最大値となる。

短周期の地震波ほど減衰しやすく、その影響を受ける地震波の周期はおよそ L/v(L: 断層の長さ、v: 断層破壊の伝播速度)程度以下、すなわち断層の破壊に要した時間程度以下の周期である。従って断層破壊に要する時間が長い巨大地震では地震の発生を瞬時の破壊と見なせなくなり、例えば周期20秒の地震波の振幅に着目する表面波マグニチュードは断層破壊に20秒程度かかる約100 kmより長い断層では、地震の規模が大きくなっても地震波の振幅が頭打ちとなる[8]

マグニチュードを決めるために用いる地震波の周波数とエネルギーのモデルから地震波によるマグニチュードは高周波、かつ規模の小さな地震ほど飽和が起こりにくいことが示される[9]。このモデルでは実体波マグニチュード (Mb) は約5.5から飽和しはじめ6で飽和となり、表面波マグニチュード (Ms) では7.25から飽和しはじめ8で飽和となるが、飽和となる数値は観測される地震により異なり、Mb ≧ 6 の報告例も多数あるためモデルがあらゆる地震に当てはまるわけではない[10]

エネルギーが大きく、長周期(低周波)の地震動が卓越した巨大地震においても飽和がなく、より正確に地震の規模を表す指標として、無限大の長周期地震波に基づくと見做されるモーメント・マグニチュードが考案され、地震学では広く使われている。
一般的なマグニチュードの種類

地震学では各種のマグニチュードを区別するために「M」に続けて区別の記号を付ける。地震学ではモーメント・マグニチュード (Mw) を単に「M」と表記することが多い(アメリカ地質調査所 (USGS) など)。日本では気象庁マグニチュード (Mj) を単に「M」と表記することが多い。各種のマグニチュードの値の間では差異を持つので注意が必要である。

以下、振幅という場合は片振幅(中心値からの振幅)を意味する。
ローカル・マグニチュード ML詳細は「ローカル・マグニチュード」を参照

リヒター・スケールとも。リヒターは、ウッド・アンダーソン式地震計(2800倍)の最大振幅 A(単位:μm)を震央からの距離100 kmのところの値に換算したものの常用対数をマグニチュードとした。従って、地震波の振幅が10倍大きくなるごとに、マグニチュードが1ずつあがる。 M l = log 10 ⁡ A {\displaystyle M_{l}=\log _{10}A}
表面波マグニチュード Ms詳細は「表面波マグニチュード」を参照

ベノー・グーテンベルグは、表面波マグニチュードを M s = log ⁡ A h + 1.656 log ⁡ Δ + 1.818 + C {\displaystyle M_{s}=\log A_{h}+1.656\log \Delta +1.818+C}

で定義した[11]。ここで、Ah は表面波水平成分の最大振幅、Δ は震央距離(角度)、C は観測点ごとの補正値である。

これとほぼ同じであるが、国際地震学地球内部物理学協会の勧告(1967年)では、 M s = log ⁡ ( A / T ) + 1.66 log ⁡ Δ + 3.30 {\displaystyle M_{s}=\log(A/T)+1.66\log \Delta +3.30} (なお、20° ≦ Δ ≦ 60°)

としている。A は表面波水平成分の最大振幅 (μm)、T は周期(秒)である。周期約20秒の地震動に着目して求められている[8][10]

より長周期の例えば周期100秒の表面波に基づいてその振幅からマグニチュードを算出すれば、巨大な地震の規模もある程度適切に表される様になる。例えば周期20秒の表面波マグニチュードではほとんど差が見られない1933年三陸地震、1960年チリ地震、1964年アラスカ地震の周期100秒表面波マグニチュード M100 は、それぞれ、8.4、8.8、8.9となる[12]
実体波マグニチュード Mb

グーテンベルクおよびリヒターは、実体波マグニチュードを M b = log 10 ⁡ ( A T ) + B ( Δ , h ) {\displaystyle M_{b}=\log _{10}\left({\frac {A}{T}}\right)+B(\Delta ,h)}

で定義した。A は実体波(P波、S波)の最大振幅、T はその周期、B は震源の深さ h と震央距離 Δ の関数である。

経験的に、 M b = 0.63 M s + 2.5 {\displaystyle M_{b}=0.63M_{s}+2.5}

が成り立つ。周期約1秒の地震動に着目して求められている[8]
モーメント・マグニチュード Mw詳細は「モーメント・マグニチュード」を参照

1979年、当時カリフォルニア工科大学地震学の教授であった金森博雄と彼の学生であったトーマス・ハンクス(英語版)は、従来のマグニチュードは地震を起こす断層運動地震モーメント (M0) と密接な関係があり、これを使えば大規模な地震でも値が飽和しにくいスケールを定義できるという金森のアイデア[13]をモーメント・マグニチュード (Mw) と名付け、以下のように計算される量として発表した[14]。 M w = log 10 ⁡ M 0 − 9.1 1.5 {\displaystyle M_{\mathrm {w} }={\frac {\log _{10}M_{0}-9.1}{1.5}}} (ただし M0 = μ × D × S)

S は震源断層面積、D は平均変位量、μ は剛性率である。

これまでに観測された地震のモーメント・マグニチュードの最大値は、1960年に発生したチリ地震の9.5である[13]

断層面の面積(長さ×幅)と、変位の平均量、断層付近の地殻の剛性から算出する、まさに断層運動の規模そのものである。

他の種類のマグニチュードでは、M8を超える巨大地震で地震の大きさの割りに値が大きくならない「頭打ち」と呼ばれる現象が起こる。モーメント・マグニチュードはこれが起こりにくく、巨大地震の規模を物理的に評価するのに適しているとされ、アメリカ地質調査所 (USGS) をはじめ国際的に広く使われている。

日本の気象庁では、2011年に発生した東北地方太平洋沖地震に対して、地震の規模をより適切に表せるとして、下記の気象庁マグニチュード (Mj8.4) に加え、モーメント・マグニチュードの計算値 (Mw9.0) を発表した。
気象庁マグニチュード Mj詳細は「気象庁マグニチュード」を参照

気象庁マグニチュードは、日本で国としての地震情報として使用されており[15]、2003年の約80年前まで遡って一貫した方法で決定され、モーメント・マグニチュードともよく一致している[16]。略称としてMj、或いはMJMAが使われる。

気象庁マグニチュードは周期5秒までの強い揺れを観測する強震計で記録された地震波形の最大振幅の値を用いて計算する方式で、地震発生から3分程で計算可能という点から速報性に優れている。一方、マグニチュードが8を超える巨大地震の場合はより長い周期の地震波は大きくなるが、周期5秒程度までの地震波の大きさはほとんど変わらないため、マグニチュードの飽和が起き正確な数値を推定できない欠点がある[17]東北地方太平洋沖地震では気象庁マグニチュードを発生当日に速報値で7.9、暫定値で8.4と発表したが、発生2日後に地震情報として発表されたモーメント・マグニチュードは9.0であった[18]
2003年9月24日以前

2003年9月24日までは、下記のように、変位マグニチュードと速度マグニチュードを組み合わせる方法により計算していた。
変位計 (h ≦ 60 km) の場合
M j = log ⁡ A + 1.73 log ⁡ Δ − 0.83 {\displaystyle M_{j}=\log A+1.73\log \Delta -0.83} (A は周期5秒以下の最大振幅)
変位計 (h ≧ 60 km) の場合
M j = log ⁡ A + K ( Δ , h ) {\displaystyle M_{j}=\log A+K(\Delta ,h)} (K(Δ, h) は表による)
速度計の場合
M j = log ⁡ A Z + 1.64 log ⁡ Δ + α {\displaystyle M_{j}=\log A_{Z}+1.64\log \Delta +\alpha } (AZ は最大振幅、α は地震計特性補正項)
2003年9月25日以降

変位マグニチュードは、系統的にモーメント・マグニチュードとずれることがわかってきたため、差異が小さくなるよう、2003年9月25日からは計算方法を改訂し(一部は先行して2001年4月23日に改訂)、あわせて過去の地震についてもマグニチュードの見直しを行った。
変位によるマグニチュード
M d = 1 2 × log ⁡ ( A n 2 + A e 2 ) + β d ( Δ , H ) + C d {\displaystyle M_{d}={\frac {1}{2}}\times \log({A_{n}}^{2}+{A_{e}}^{2})+\beta _{d}(\Delta ,H)+C_{d}} (An, Ae の単位は 10?6 m)

ここで、βd は震央距離と震源深度の関数(距離減衰項)であり、H が小さい場合には坪井の式に整合する。Cd は補正係数。
速度振幅によるマグニチュード
M v = α × log ⁡ ( A z ) + β v ( Δ , H ) + C v {\displaystyle M_{v}=\alpha \times \log(A_{z})+\beta _{v}(\Delta ,H)+C_{v}} (Az の単位は 10?5 m/s)

ここで、βv は Md と連続しながら、深さ 700 km、震央距離 2000 km までを定義した距離減衰項である。Cv は補正係数。
特殊なマグニチュードの種類

マグニチュードを厳密に区別すると、その種類は40種類以上に及ぶ[19]が、ここでは特徴的なものを記載する。
地震動継続時間から求めるマグニチュード

地震記象上で振動が継続する時間 Td はマグニチュードとともに長くなる傾向がある。そこで一般に、 M = c 0 + c 1 log ⁡ T d + c 2 Δ {\displaystyle M=c_{0}+c_{1}\log T_{d}+c_{2}\Delta }

の式が成り立つ。c0, c1, c2 は定数、Δ は震央距離である。c2Δ は小さいため、第3項を省略することもある。

過去には河角のWiechert式地震計に対しての式 M = 4.71 + 1.67 log ⁡ T d {\displaystyle M=4.71+1.67\log T_{d}}

などが提案されている。

地震波記録の回収や解析に多大な労力を要した1970年代頃までは、1つの地震計記録からマグニチュードを概算する方法として、気象台・観測所などで利用された。ただし各定数は地震計の特性に大きく依存するため、短時間で多くの地震波記録を扱うことができる現在ではこの式はほとんど用いられない。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:90 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef