マクスウェル方程式
[Wikipedia|▼Menu]
.mw-parser-output .hatnote{margin:0.5em 0;padding:3px 2em;background-color:transparent;border-bottom:1px solid #a2a9b1;font-size:90%}

マクスウェルの関係式」とは異なります。
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

この記事には参考文献外部リンクの一覧が含まれていますが、脚注による参照が不十分であるため、情報源が依然不明確です。適切な位置に脚注を追加して、記事の信頼性向上にご協力ください。(2022年7月)

マクスウェルの方程式(マクスウェルのほうていしき、: Maxwell's equations、マクスウェル方程式とも)は、電磁場を記述する古典電磁気学基礎方程式である。マイケル・ファラデーが幾何学的考察から見出した電磁力に関する法則が1864年ジェームズ・クラーク・マクスウェルによって数学的形式として整理された[1]。マクスウェルの方程式はマックスウェルの方程式とも表記される。マクスウェル-ヘルツの電磁方程式、電磁方程式などとも呼ばれる。

これらの方程式系に整理されたことから、電場と磁場の統一(電磁場)、電磁波であることなどが導かれ、その時空論としての特殊相対性理論に至る。後年、アインシュタインは特殊相対性理論の起源はマクスウェルの電磁場方程式である旨を明言している。

マクスウェルが導出した方程式はベクトルの各成分をあたかも互いに独立な量であるかのように別々の文字で表して書かれており、現代の洗練された形式ではなかった。これを1884年ヘヴィサイドベクトル解析の記法を適用して現在の見やすい形に書き改めた。しかも彼は既にそこで電磁ポテンシャルが消去出来ることを示して、方程式系を今日我々が知る形に整理していた。しかし、その意義は直ちには認められるに至らなかった。

ベクトル記法が一般化し始めるのは 1890年代半ばであって、ヘルツの論文ではまだそれを使っていない。いずれにせよ、このベクトル解析の記法の採用はにおける様々な対称性を一目で見ることを可能にし、物理現象の理解に大いに役立った[2]

真空中の電磁気学に限れば、マクスウェルの方程式の一般解は、ジェフィメンコ方程式として与えられる。

なお電磁気学の単位系国際単位系に発展したMKSA単位系のほかガウス単位系などがあり、単位系によってマクスウェルの方程式の表式における係数が異なるが、以下では原則として国際単位系を用いることとする。
4つの方程式マクスウェルの方程式の図示

(微分形による)マクスウェルの方程式は、以下の4つの連立偏微分方程式である。記号「 ∇ {\displaystyle \nabla } 」はナブラ演算子、記号「 ∇ ⋅ {\displaystyle \nabla \cdot } 」、「 ∇ × {\displaystyle \nabla \times } 」はそれぞれベクトル場の発散 (div)回転 (rot) である。 { ∇ ⋅ B ( t , r ) = 0 ∇ × E ( t , r ) = − ∂ B ( t , r ) ∂ t ∇ ⋅ D ( t , r ) = ρ ( t , x ) ∇ × H ( t , r ) = j ( t , r ) + ∂ D ( t , r ) ∂ t {\displaystyle {\begin{cases}{\begin{aligned}\nabla \cdot {\boldsymbol {B}}(t,{\boldsymbol {r}})&=0\\\nabla \times {\boldsymbol {E}}(t,{\boldsymbol {r}})&=-{\dfrac {\partial {\boldsymbol {B}}(t,{\boldsymbol {r}})}{\partial t}}\\\nabla \cdot {\boldsymbol {D}}(t,{\boldsymbol {r}})&=\rho (t,{\boldsymbol {x}})\\\nabla \times {\boldsymbol {H}}(t,{\boldsymbol {r}})&={\boldsymbol {j}}(t,{\boldsymbol {r}})+{\dfrac {\partial {\boldsymbol {D}}(t,{\boldsymbol {r}})}{\partial t}}\end{aligned}}\end{cases}}}


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:122 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef