マイクロフォン
[Wikipedia|▼Menu]
.mw-parser-output .hatnote{margin:0.5em 0;padding:3px 2em;background-color:transparent;border-bottom:1px solid #a2a9b1;font-size:90%}

「マイク」はこの項目へ転送されています。その他の用法については「マイク (曖昧さ回避)」をご覧ください。
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

この記事には複数の問題があります。改善やノートページでの議論にご協力ください。

出典がまったく示されていないか不十分です。内容に関する文献や情報源が必要です。(2021年3月)


古い情報を更新する必要があります。(2021年3月)
出典検索?: "マイクロフォン" ? ニュース ・ 書籍 ・ スカラー ・ CiNii ・ J-STAGE ・ NDL ・ dlib.jp ・ ジャパンサーチ ・ TWL

Shure Brothers社のマイクロフォンコンデンサマイクロフォン(ウィンドスクリーンを外したところ)

マイクロフォンまたはマイクロホン[注 1]: microphone)は、電気信号に変換する電子部品である。また、それが内蔵された集音を目的とした応用機器としての音響機器もマイクと呼ばれる。略称マイク(: mic)。

一般にマイクロフォンやマイクと言われる場合は、部品としてのマイクではなく、応用機器のマイクを示す。
概要

音(空気振動)をダイヤフラム等で受け止め、これを電気信号に変換する音響機器である。電気音響変換器の一種。

箱型に多い、ダイヤフラムが筐体内に垂直に立った状態で音を受けるタイプを「サイドアドレス」、円筒の中にダイヤフラムが固定され、概して円筒の軸方向に指向性を持つタイプを「エンドアドレス」と呼ぶ。エンドアドレスマイクは特に「ペンシルマイク」と呼ばれることもある。円筒形でありながらサイドアドレスタイプというマイクもAKG/TelefunkenのC12などが存在する。

ダイヤフラムの大きさによって、周波数特性・過渡特性や高域での指向特性が異なる[注 2]。サンケンのCU-41のように口径の異なる複数のダイヤフラムを持ったマイクもある。
原理による分類
ムービング・コイル型

ダイナミックマイク(動電型マイク)の一種で、永久磁石と可動コイルを組み合わせたマイク。可動線輪型。
構造と動作原理

電磁誘導コイルを永久磁石のそばで振動させ、コイル内の磁束を変化させるとコイルに起電力が発生する)を利用したマイク。コイルはプラスチックフィルムをドーム状に成形した振動板(ダイヤフラム)に固定されていて、そのダイヤフラムが音波を受けて振動し、磁界内でコイルが動くことにより音声信号を得る。
特徴と応用

機構が単純で電池や電源も不要、丈夫で湿度にも強く、また大音量でも歪みにくい。しかし、コイルを含み振動系の質量が大きいため、高音域には応答しにくく、また歌手が手に持って歌うときに、マイクを握る時に発生する摩擦音や掌の筋肉が発する音などの機械的振動を拾いやすい。この欠点に対処するためにエレメントを防振材で支持するのが一般的であるが、機構的に振動を打ち消す工夫をしたものもある。一般的にはコンデンサマイクよりも特性は劣るが、使いやすく丈夫な点、特有の音質などを買われて、舞台などPAを必要とする場面や、マイクが多少乱暴に扱われるような場面で、ボーカル、ドラム、ギターアンプ等の集音に用いられる。

なお、ダイナミックスピーカーとは構造が同じである。この構造のマイクやスピーカーには入出力の可逆性があり、音声信号を加えればスピーカーとして動作し、音声を加えれば振動により電気が発生しダイナミックマイクとして動作する。ただし、設計とは逆に使うと周波数特性や能率が悪くなる。また、マイクに音声信号を加えると強い電流により恒久的な不具合を起こすため通常はスピーカーとしては利用されない。一方、一部のインターホントランシーバー等では、部品数を減らすために、ダイナミックスピーカーをマイクとして兼用している。

ヤマハの「SUBKICK」など、ダイナミックスピーカーをバスドラム用の収音マイクとして使っている応用例もある。
リボン型

上記ムービング・コイル型と並ぶ、ダイナミックマイクの一種。永久磁石と可動金属リボンを組み合わせたマイク。
構造と動作原理

ムービング・コイル型では磁界中にコイルを配置するが、リボン型では薄い金属膜(主としてアルミ箔、新しいものでは耐久性の高いカーボンナノチューブ[注 3]によるものもある)を細長くカットし、細かい折り目をつけたリボン状の導体を、磁極の間の細長いスリットに配置する。音声によって導体であるリボン振動体が磁界中で振動することによって、リボンの両端に起電力が生じ、音声信号が得られる。
特徴と応用

リボンが折り目を付けてゆるく張られているため、人の息など「吹かれ」と呼ばれるノイズや振動に弱い反面、振動系が軽くて動きやすいため、低音域から高音域の音に良く反応し、広い周波数帯域を持つ。音質が柔らかいことから、音声和楽器弦楽器などの集音に好んで使われる。
速度型マイク

リボンの両面が空間に開放されているタイプは、リボン面に垂直な両側の方向からの音に対して高い感度を示し、面に平行な方向からの音に対しては感度が著しく低い、いわゆる両指向性を示す。リボン振動体はその両側の音圧差により振動し、リボンの振動速度及び出力電圧は空気の粒子速度に比例する。空気の振動速度に比例する電圧が生ずることから、速度型マイクに分類される。ヴェロシティマイク(ベロシティマイク)と呼ばれる所以である(指向性の実現法参照)。

非常にデリケートな構造を持ち、扱いに注意が必要なことや、形が大きく重いこと、出力インピーダンスが低く音声から電流への変換効率も低いことから近年[いつ?]はほとんど生産されていなかったが、ここ数年[いつ?]はその良さ(繊細な音)が見直され、高価な製品から安価な製品まで比較的多種の製品が製造されるようになっている。
コンデンサ型

コンデンサの原理を応用したもの。
構造と動作原理

互いに平行な2枚の金属板を近接させるとコンデンサになる。その一方をダイヤフラム(蒸着などにより金属を貼り付けたプラスチックフィルム、または金属薄膜)に置き換えると、振動に応じて電極間の距離が変わるため、音声信号に比例した静電容量の変化が発生する。高抵抗を介して電極間に直流電圧をかけると、静電容量の変化をそれに比例した電圧の変化として取り出すことができる(コンデンサマイクロホンカプセル)。

カプセル自体の出力インピーダンスが高いため、コンデンサマイクの電気的な出力を効率的に取り出すためには、インピーダンスを変換するための前置増幅器(プリアンプ)が必要である。インピーダンス変換素子としては真空管電界効果トランジスタ(FET)などの極めて高い入力インピーダンスをもったものが用いられ、これは一般にカプセルの近傍に置かれる。

ダイヤフラムと対向する金属板(背極、バックプレート)との間の距離は、一般的に数十μmで、電気容量は数10pF程度である。金属板には全面に渡って小さな穴を開けて空気の流通を妨げないようにし、ダイヤフラムが振動しやすくなっている。ダイヤフラムは加わる電圧によって金属板に吸着しないように、一定の張力をかけて保持されている。そのため、コンデンサマイクロホンの振動系は高域に共振周波数を持つ。中には共振周波数が可聴帯域にあるものもあり、マイクの個性の一つとされている[注 4]

以上の「DCバイアス」方式でダイヤフラムに作用させていた直流電圧をMHz帯の低電圧高周波に置き換えたものが「HF(High Frequency)バイアス」、「RFバイアス(Radio Frequency)バイアス」と呼ばれる方式である[注 5]。振幅や周波数の変調を可聴周波数の音声に変換するので雑音を抑えつつ周波数帯域の上限を伸ばすことができる、DCバイアスでは絶縁を保てない多湿な環境や雨天でも性能が落ちないなど有利な点が多い。
特徴と応用

ダイヤフラムは一般に数μmの厚みしかなく、非常に軽いので、応答が非常に速くクリアな音質に特徴がある。また、ダイヤフラムの振動を制御しやすい構造のために、比較的簡単に平坦な周波数特性が得られる。一方で増幅回路を含むため、大音量で歪むことがある、温度や湿度の影響で雑音が発生しやすいなどのデリケートな部分もあるが、技術的に改良を加えてより過酷な条件での使用に耐える製品もある。大音量時の歪に対しては、マイク内部で信号を減衰させるスイッチ(Pad)をもったものもある。また指向性を変えられるものもある。

主な用途は音響測定や録音、あるいは各種機器へ組み込むなど小型化が求められる場合等である。音楽を高品位で収録する場合に使用されることが多い。スタジオなどではボーカル、弦楽器、金管楽器にしばしば利用される。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:68 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef