ポルフィリン
[Wikipedia|▼Menu]
ポルフィン環の構造
(図中に実線で示されたすべての結合共役系であり共鳴している)

ポルフィリン (porphyrin) は、ピロールが4つ組み合わさって出来た環状構造を持つ有機化合物。環状構造自体はポルフィン (porphine, CAS 101-60-0) という名称であるが、これに置換基が付いた化合物を総称してポルフィリンと呼ぶ。古代より使用されてきた貝紫(ポルフィラ、: πορφ?ρα)が名前の由来。類似化合物としてフタロシアニンコロールクロリンなどがある。

分子全体に広がったπ共役系の影響で平面構造をとり、中心部の窒素はマグネシウムをはじめとする多くの元素と安定な錯体を形成する。また、πスタッキング(J会合)によって他の化合物と超分子を形成することもある。金属錯体では、ポルフィリン平面に対してz方向に軸配位子を取ることも多く、この効果を利用しても様々な超分子がつくられている。

ポルフィリンや類似化合物の金属錯体は、生体内でヘムクロロフィルシアノコバラミン(ビタミンB12)などとして存在しいずれも重要な役割を担う他、人工的にも色素や触媒として多様に用いられる。
化学合成ローゼムント合成

ポルフィリンを合成するには、ピロールアルデヒドを酸性条件で縮合させるのが一般的である。この手法は開発者の名をとってローゼムント合成 (Rothemund Synthesis) と呼ばれる。用いるアルデヒドを変化させることで、ピロール間の炭素上(メソ位)へ、またピロールの誘導体を使うことでピロール上(ベータ位)へ様々な置換基を導入することができる。ただし、この方法では他にも多くのピロール重合体が生成するため、収率はあまり高くない。

ピロールから多段階で合成を行うことで、非対称的なポルフィリン化合物を合成することも可能である。また、ポルフィリンをユニット構造とするポリマー(ポルフィリンアレイ)の合成も行われている。

金属錯体にする場合は、ポルフィリンを適当な金属塩と共に加熱するだけでよいことが多い。ただし、金属の酸化数によっては全く反応が進行しない。また、系中が酸性になるとピロールの窒素にプロトンが配位してしまい、反応が進行しなくなるため、若干の塩基を加える場合がある。
生合成δ-アミノレブリン酸からプロトポルフィリンIXまでの生合成経路

生体内ではまずδ-アミノレブリン酸(ALA)が合成され、ALA2分子を脱水縮合させてピロールであるポルフォビリノーゲンが合成される。ついでポルフォビリノーゲン4分子を直鎖状に重合させてヒドロキシメチルビランを合成し、これを閉じてポルフィリンの1つであるウロポルフィリノーゲンIIIが合成される。ウロポルフィリノーゲンIIIは生体内の様々なポルフィリンおよび関連化合物を合成する基点となっている。δ-アミノレブリン酸の合成を第1段階とすると、プロトポルフィリンIXの合成までヘム合成とクロロフィル合成は以下のような共通の合成経路をたどる。
第2段階

D-アミノレブリン酸2分子がアミノレブリン酸脱水酵素によって脱水縮合されると、ピロール環構造を持つポルフォビリノーゲン(PBG)となる。 D-アミノレブリン酸2分子 ポルフォビリノーゲン(PBG)
第3段階

PBG 4分子がポルフォビリノーゲン脱アミノ酵素(別名:ヒドロキシメチルビラン合成酵素)によってアンモニアを脱離して結合すると、ピロールが4つ直線状に連結した構造をもつヒドロキシメチルビランが出来る。 4 + H2O ⇒ + 4 NH3 ポルフォビリノーゲン ヒドロキシメチルビラン
第4段階

ヘム合成回路においてヒドロキシメチルビランウロポルフィリノーゲンIIIシンターゼによって縮合し、環を巻くとウロポルフィリノーゲンIIIとなる。この際、ウロポルフィリノーゲンIIIシンターゼの働きにより4つのピロール環が整然と並んだヒドロキシメチルビランの一端のピロール環一つだけが反転して縮合し環を形成する。ウロポルフィリノーゲンIIIシンターゼが働かない場合、ピロール環が整然と並んだままのヒドロキシメチルビランが自発的に縮環してウロポルフィリノーゲンI が生成する。ウロポルフィリノーゲンI はウロポルフィリノーゲン脱炭酸酵素の基質となりコプロポルフィリノーゲンIへと変換されるが、これはコプロポルフィリノーゲン酸化酵素の基質とならないため、プロトポルフィリンには至らない[1]。このようにウロポルフィリノーゲンI やコプロポルフィリノーゲンIが蓄積していくことがポルフィリン症の原因の1つとなりうる。 ヒドロキシメチルビラン ウロポルフィリノーゲンIII ウロポルフィリノーゲンI
第5段階

ウロポルフィリノーゲンIIIが、ウロポルフィリノーゲン脱炭酸酵素によって4つの酢酸基が脱炭酸されてメチル基となったものがコプロポルフィリノーゲンIIIである。 ---> + 4 CO2ウロポルフィリノーゲンIII コプロポルフィリノーゲンIII
第6段階

さらに、コプロポルフィリノーゲン酸化酵素によって2箇所のプロピオン酸基が酸化され、ビニル基に変換されるとプロトポルフィリノーゲンIX となる。 ---> コプロポルフィリノーゲンIII プロトポルフィリノーゲンIX
第7段階

最終的にプロトポルフィリノーゲン酸化酵素によって酸化されると、共役したポルフィリン環が形成され、プロトポルフィリンIX ができあがる。 ---> プロトポルフィリノーゲンIX プロトポルフィリンIX

ウロポルフィリノーゲンIIIから、脱炭酸酸化を経てプロトポルフィリンIXが合成される。

プロトポルフィリンIXにが配位したものがヘムであり、ヘモグロビンシトクロムなどの補欠分子族として機能する。

プロトポルフィリンIXにマグネシウムが配位し数段階を経て側鎖がつくと、光合成色素として不可欠なクロロフィルができる。


ウロポルフィリノーゲンIIIから、メチル化コバルト配位・側鎖の付加などを経てシアノコバラミン(ビタミンB12)が合成される。

ポルフィリンの生合成経路(プロトポルフィリンIXまで)は、一部の寄生性生物を例外として幅広い生物で共有されている。ただし出発物質であるALAの合成経路には2種類があり、生物の系統によってどちらを用いているかは異なる。
Shemin経路
グリシンスクシニルCoAを縮合させて合成する。αプロテオバクテリアと、真核生物のミトコンドリアで利用されている。
C5経路
tRNAにチャージされているグルタミン酸を還元的に切り離し、アミノ基転移を経て合成する。大部分の原核生物と、真核生物の色素体で利用されている。

2種類の経路を両方もつ生物は稀である。色素体を持つ真核生物はミトコンドリアも持っているが、通常どちらか一方のみが用いられる。例えば緑色植物紅藻珪藻では色素体のC5経路のみが利用されShemin経路はそもそも存在しない。両方の経路を利用している生物としてはミドリムシが挙げられる。
ポルフィリン生合成の8段階の反応と関連事項

酵素基質生成物染色体EC番号OMIMポルフィリン症
アミノレブリン酸合成酵素グリシンスクシニルCoAD-アミノレブリン酸3p21.1 ⇒2.3.1.37125290-
アミノレブリン酸脱水酵素アミノレブリン酸ポルフォビリノーゲン9q34 ⇒4.2.1.24125270アミノレブリン酸脱水酵素欠損症
ポルフォビリノーゲン脱アミノ酵素ポルフォビリノーゲンヒドロキシメチルビラン11q23.3 ⇒2.5.1.61176000急性間欠性ポルフィリン症 (AIP)
ウロポルフィリノーゲンIII合成酵素ヒドロキシメチルビランウロポルフィリノーゲンIII10q25.2-q26.3 ⇒4.2.1.75606938先天性赤芽球性ポルフィリン症 (CEP)
ウロポルフィリノーゲンIII脱炭酸酵素ウロポルフィリノーゲンIIIコプロポルフィリノーゲンIII1p34 ⇒4.1.1.37176100晩発性皮膚ポルフィリン症(PCT)
コプロポルフィリノーゲン酸化酵素コプロポルフィリノーゲンIIIプロトポルフィリノーゲンIX3q12 ⇒1.3.3.3121300遺伝性コプロポルフィリン症(HCP)
プロトポルフィリノーゲン酸化酵素プロトポルフィリノーゲンIXプロトポルフィリンIX1q22 ⇒1.3.3.4600923多彩性ポルフィリン症(VP)
鉄付加酵素プロトポルフィリンIXヘム18q21.3 ⇒4.99.1.1177000骨髄性プロトポルフィリア

性質

ポルフィリンはさまざまな特徴をもつ化合物群であり、錯体化学の中心的な研究課題となる化合物のひとつである。扱われる内容は極めて広く、ポルフィリン類を専門的に取り扱う学術雑誌 Porphyrin and Phthalocyanine が発行されていたほか、百科事典的な内容を持つ Porphyrin Handbook が刊行されている。
光学特性

一般的なポルフィリンはソーレー帯と呼ばれる400–500 nm付近の鋭い吸収帯と、Q帯と呼ばれる500–700 nm付近の吸収帯をもつ。ソーレー帯のモル吸光係数は種類によっては106 M/cmのオーダーに達し、理論値の100%近い量子収率を示す。Q帯はポルフィリン単独の場合4つに分裂しているが、錯体にすると対称性があがるため分裂数が減少することがある。錯体の吸収スペクトルは中心の金属によって異なるため、分析試薬として用いられることがある。

クロロフィルやポルフィリン亜鉛錯体などでは、吸収した光は緩和せず、光電子移動を引き起こす。この過程は光合成での光捕集部位で進行している反応であり、生化学的な興味からの他、太陽電池への応用などが検討されている。

また、ポルフィリンは発光性であるものも多い。白金ポルフィリン錯体の発光特性は酸素分圧によって変化するため、風洞実験をするさいに感圧塗料として機体に塗布すると圧力センサーとして機能する。また、有機ELの発光材料としても検討されている。
酸化還元特性


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:36 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef