ポリフェニレンビニレン
[Wikipedia|▼Menu]
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

この項目「ポリパラフェニレンビニレン」は翻訳されたばかりのものです。不自然あるいは曖昧な表現などが含まれる可能性があり、このままでは読みづらいかもしれません。(原文:en:Poly(p-phenylene vinylene) 05:01, 5 May 2016 UTC の版)
修正、加筆に協力し、現在の表現をより自然な表現にして下さる方を求めています。ノートページや履歴も参照してください。(2017年6月)

Polyphenylene vinylene

別称poly(1,4-phenylene-1,2-ethenediyl)
識別情報
CAS登録番号26009-24-5 
ChemSpidernone
特性
化学式(C8H6)n
外観黄色固体
への溶解度不溶
特記なき場合、データは常温 (25 °C)・常圧 (100 kPa) におけるものである。

ポリパラフェニレンビニレン(Poly(p-phenylene vinylene)、略称: PPV、ポリフェニレンビニレン polyphenylene vinyleneとも)は、剛直棒状高分子に分類される導電性高分子である。p-フェニレン基とビニレン基の繰り返し構造を持つ。PPVは、この種の高分子の内で唯一高秩序結晶性薄膜が製造できる。PPVとその誘導体ドーピングにより導電性を示す。 水には不溶だが、前駆体は水溶液中で扱うことができる。光学バンドギャップが狭く、明るい黄色の蛍光を発するため、有機発光ダイオード (OLED) や太陽電池への応用が模索されている[1]。また、PPVをドープすることにより導電性材料を製造することもある[要出典]。物理的および電気的物性は側鎖官能基を導入することで変化させることができる。
合成法

PPVは様々な手法で合成され、その詳細により純度や分子量が決定される。最も一般的な手法は、α,α'-2置換パラキシレン塩基誘導脱離により生じるパラキシリレン中間体とする方法である。
その他の方法

キシリレンに基づく合成経路が主流ではあるが、その他にも多くの合成経路が評価されてきた。
逐次重合経路

PPVは、芳香族ビスホスホニウム塩およびジアルデヒド、特に1,4-ベンゼンジアルデヒドから誘導されるビスイリド間のウィッティヒカップリング反応により合成することができる。

この、ウィッティヒ濃縮を初めとする逐次重合(英語版)反応では、5?10量体程度の分子量の小さいオリゴマーが得られることが多い。ポリマーの溶解度を上げてより分子量の大きい生成物を得るために、様々な側鎖(アルキル基アルコキシ基フェニル基)が導入される。逐次重合アプローチの利点は、オルト、メタ、パラキシリレンの結合を主鎖に組み込むことができる点である。特定の立体規則性を持つコポリマーもこの方法では容易に合成できる。

PPV誘導体は、ベンジルニトリルと芳香族ジアルデヒドとのクネーフェナーゲル縮合により合成することもできる。この方法では、ニトリル基の加水分解など多くの副反応が生じるため、反応条件を細心の注意をもって整える必要がある。


ヘックカップリング経路

可溶化のための側鎖があれば、エチレンと様々な芳香族ジブロミドをヘック反応によりカップリングさせることで、適当な分子量 (3000?10000) のポリマーを得ることができる。しかし、この方法では気相出発物質の量を正確に添加しなければ、過剰量のポリエチレンが生じるおそれがある。


開環重合経路

ビシクロオクタジエン化合物を開環メタセシス重合 (ROMP) させることにより、有機溶媒に可溶で分子量の大きい前駆体ポリマーが得られる。このポリマーを薄膜に整形した後に熱処理すると、PPVに変換することができる。アミン触媒存在下では変換温度を下げることができる。

シリル基置換パラシクロファン誘導体を用いる別のROMP経路も存在する。PPV への変換はシリルオキシ基の脱離後に熱処理するか、前駆体ポリマーを酸で処理することにより可能である。この方法の利点は、分子量のよく揃ったポリマーおよびブロックコポリマーが容易に用意できることである。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:21 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef