ボツリヌストキシン
[Wikipedia|▼Menu]

ボツリヌストキシン
臨床データ
法的規制

US: ?-only

投与経路IM (approved),SC, intradermal, into glands
識別
CAS番号
93384-43-1
ATCコードM03AX01 (WHO)
PubChemCID: 5485225
DrugBankBTD00092
化学的データ
化学式C6760H10447N1743O2010S32
分子量149.320 kDa
テンプレートを表示
ボツリヌストキシンの分子構造

ボツリヌストキシン(Botulinum toxin (BTX) or Botox)は、分子量が15万ほどのタンパク質で、ボツリヌス菌が産生する複合体毒素である。ボツリヌス毒素とも呼ばれる。毒素産生菌は、毒素型によりA,B,C,D,E,F,G の7種類に大別されているが、産生される毒素も抗原性の違いによりA,B,C,D,E,F,G の7種類に分けられている。医薬品としては筋肉を収縮させないよう働く作用を利用して、痙縮の緩和や美容に用いられる。
概要

ヒトでは、A,B,E,F型毒素で中毒を発生する事が多く、鳥類哺乳類では C,D型毒素で中毒する事が多い[1]。毒素が含まれる食品の喫食はボツリヌス菌食中毒の原因となり、極めて毒性が強い(致死量:ヒトに対しA型毒素を経口投与した場合、体重1kgあたりの致死量が1μg[2] と推定されている。マウスに対する最小致死量 (MLD) は 0.0003 μg/kg[3]。)。毒素としては、破傷風菌が産生するテタノスパスミンをも上回る毒性を持つと言われている。しかし、100℃で10分間[4]加熱するかアルカリで処理すると失活して毒性がなくなるため、十分加熱すれば安全である(ただし、ボツリヌス菌の芽胞は耐熱性を持つ)。ボツリヌストキシンは毒素の抗原性の違いによりA?G型に分類されるが、サルへの経口投与によるデータではB型毒素への感受性が最も高い。

ボツリヌストキシンは神経筋接合部などでアセチルコリンの放出を妨げる働きをするが、作用は末梢性に限られる。中毒症状としては、消化器症状(下痢悪心嘔吐など、ただし毒素の作用ではない[要説明])に続き、めまい頭痛や視力低下・複視などを起こし、その後自律神経障害、四肢麻痺に至る。

中毒患者は、ギラン・バレー症候群と誤診される場合があるが、脳脊髄液の検査で判別できる。
発見・研究史

1895年エミール・ヴァン・エルメンゲムが毒素を発見し、1897年にウォルター・ケンプナー(ドイツ語版)によってエルメンゲムの発見した毒素に対する血清が発明された。しかし1910年ダルムシュタットで起こったシロインゲンマメの缶詰めによる食中毒でエルメンゲムの発見した毒素とは別の毒素が検出され、これ以降発見順にA型・B型・C型・・・・・と区別される様になった。1946年にはA型毒素の単結晶化が報告されている。

日本では獣医学者、細菌学者の阪口玄二が構造決定に大きく貢献した[5][6]
作用メカニズム

ボツリヌストキシンは、分子量約15万のタンパク質であり、細胞外に分泌された後に、菌自身のプロテアーゼまたは動物消化管トリプシンによって、分子量約5万の活性サブユニット(Aサブユニット、軽鎖)と、約10万の結合サブユニット(Bサブユニット、重鎖)とに切断される[7]。この両者がジスルフィド結合によって一分子ずつ結合した、AB型毒素に分類される細菌外毒素である。活性サブユニットが、毒素の本体である亜鉛結合性の金属プロテアーゼであり、結合サブユニットは標的となる神経細胞表面に特異的に存在する特定のタンパク質(毒素受容体となる)との結合に関与する。

体内に取り込まれた毒素が神経筋接合部に到達すると、神経細胞側の細胞膜シナプス前膜)に存在する毒素受容体タンパク質と、毒素の結合サブユニットが結合する。結合した毒素はエンドサイトーシスによって、分泌小胞様の小胞の内部に取り込まれ、神経細胞内でこの小胞の内部が酸性化すると、サブユニットが切断されて、細胞質内に活性サブユニットが遊離する。

神経細胞の内部には、アセチルコリンなどの神経伝達物質を内包する、脂質二重膜で覆われたシナプス小胞が存在する。神経細胞が興奮すると、このシナプス小胞がシナプス側の細胞膜の方に移動し、細胞膜と膜融合を起こすことで、小胞内部の神経伝達物質がシナプス間隙に放出される。この膜融合には、シナプス小胞の表面のシナプトブレビン (VAMP/Synaptobrevin)、細胞膜側にある、シンタキシン (Syntaxin) およびSNAP-25という、SNAREタンパク質とよばれる3つのタンパク質が関与しており、この3つが会合することによって膜融合と、神経伝達物質の放出が行われている。

細胞質に遊離したボツリヌストキシンの活性サブユニットは、この3つのSNAREタンパク質を標的として特異的に切断し、破壊してしまう。SNAREタンパク質のいずれかが破壊されると、シナプス小胞と細胞膜の膜融合が起こらなくなり、神経伝達物質の放出が阻害される結果、神経伝達が遮断される。これがボツリヌストキシンの作用メカニズムである。ボツリヌストキシンが標的とするタンパク質は、毒素の種類によって異なっており、B,D,F,G型毒素はシナプトブレビンを、A,E型毒素はSNAP-25を、C型毒素はSNAP-25とシンタキシンを、それぞれ切断する[8]

この、神経細胞のSNAREタンパク質を標的に切断するという機構は、同じクロストリジウム属である破傷風菌の毒素(テタノスパスミン)と共通の機構であるが、ボツリヌストキシンの作用は神経筋接合部に限られるのに対して、テタノスパスミンはより上位の神経に到達して作用する。これは神経細胞内に取り込まれる際、受容体タンパク質の違いによって、取り込まれる小胞の種類に差があるからだと考えられている[9]。それぞれの受容体タンパク質の全容は明らかではないが、ボツリヌストキシンではシナプトタグミンと呼ばれる、シナプス前膜とシナプス小胞内部に発現するタンパク質が受容体になることが明らかになっており、小胞膜の脂質やタンパク質を再回収するための小胞に毒素が取り込まれると考えられている。この小胞は細胞内で速やかにその内部の酸性化を起こすため、ボツリヌストキシンは最初に取り込まれた末梢部だけで作用すると考えられている。これに対して、テタノスパスミンを取り込んだ小胞はすぐには酸性化されずに、軸索に沿って逆行性に輸送され、神経細胞の細胞体のある脊髄海馬に到達して作用する。また、ボツリヌストキシンが血液脳関門を通過できないことも、作用が末梢性に限られる理由にあげられる。

培養液中や汚染食品中では、ボツリヌストキシンの毒素蛋白は1あるいは4種類の無毒蛋白と会合し、複合体を形成する。この複合体をプロジェニター毒素あるいはボツリヌス毒素複合体と呼ぶ。ボツリヌス毒素中の毒素蛋白は、動物の消化器官において分解されやすく不安定であるが、複合体を形成することで、消化器官内での分解作用から保護されていると考えられている。
開発の歴史
兵器

ボツリヌストキシンの研究は、第二次世界大戦当時に進展した。生物兵器としての研究であり、精製法についてはこの時期に確立されている。「細菌兵器(生物兵器)及び毒素兵器の開発、生産及び貯蔵の禁止並びに廃棄に関する条約」(生物兵器禁止条約)が発効した1975年以降は、開発・生産・貯蔵・輸出入が国際的に制限されているが、湾岸戦争時代にイラクが兵器として保有していたのをはじめ、テロリストに保有されやすい側面を持つ。

しかしながら、オウム真理教が実験に失敗したことが示すように、エアロゾル化して大気に散布したとしても、1分間に数%ずつ失活していく[10]ことや、気象条件に左右されることから、殺人兵器としての実用性は疑問視される部分もある[要出典]。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:40 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef