プランク定数
[Wikipedia|▼Menu]
.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:#f9f9f9;display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。

プランク定数
Planck constant
記号h
値6.62607015×10?34 J⋅s(正確に)
相対標準不確かさ定義値
語源マックス・プランク
テンプレートを表示

換算プランク定数
ディラック定数
reduced Planck constant
Dirac's constant
記号ħ
値1.054571817...×10?34 J⋅s
相対標準不確かさ定義値
語源ポール・ディラック
テンプレートを表示

プランク定数(プランクていすう、プランクじょうすう、英語: Planck constant)は、光子のもつエネルギーと振動数の比例関係をあらわす比例定数のことで、量子論を特徴付ける物理定数である。

量子力学の創始者の一人であるマックス・プランクにちなんで命名された。

作用次元を持ち、作用量子とも呼ばれている。

SIにおける単位はジュール秒(英語版)(記号: J⋅s または J s)である。プランク定数は2019年5月に定義定数となり、正確に6.62607015×10?34 J⋅sと定義された。
概要

光子の持つエネルギー(エネルギー量子)ε は振動数 ν に比例し、その比例定数がプランク定数と定義される[1]。 ε = h ν {\displaystyle \varepsilon =h\nu }

光のエネルギー E は光子の持つエネルギーの倍数の値のみを取り得る。 E = n h ν {\displaystyle E=nh\nu }

プランク定数の値は正確に h = 6.626 070 15 × 10 − 34 J s = 4.135 667 696... × 10 − 15 e V s {\displaystyle {\begin{aligned}h&=6.626\,070\,15\times 10^{-34}\,\mathrm {J\,s} \\&=4.135\,667\,696...\times 10^{-15}\,\mathrm {eV\,s} \end{aligned}}}

である(2018年CODATA推奨値[2][3])。

また、プランク定数 h を 円周率 π の2倍で割った量 .mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num,.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0 0.1em}.mw-parser-output .sfrac .den{border-top:1px solid}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}h/2π もよく使われるため、「換算プランク定数」、または「ディラック定数」と呼ばれる[4]

ディラック定数の値は ℏ = 1.054 571 817... × 10 − 34 J s = 6.582 119 569 × 10 − 16 e V s {\displaystyle {\begin{aligned}\hbar &=1.054\,571\,817...\times 10^{-34}\,\mathrm {J\,s} \\&=6.582\,119\,569\times 10^{-16}\,\mathrm {eV\,s} \end{aligned}}}

である(2018年CODATA推奨値[5][6])。
記号

プランク定数は、記号 h で表される。この記号はプランクの輻射公式を説明する定数としてプランク自身の論文の中で導入されている。Hilfsgrose(Hilfs=補助、grose=大きさ、量)の頭文字に由来する。また専用の記号として ℎ (PLANCK CONSTANT, Unicode U+210E) も用意されている。

ディラック定数の記号は、 h にストローク符号を付けた記号 ħ(H WITH STROKE, LATIN SMALL LETTER、Unicode U+0127、JIS X 0213 1-10-93)が使われる。量の記号にイタリック体を用いる約束に従って、専用の記号として ℏ (PLANCK CONSTANT OVER TWO PI, Unicode U+210F, JIS X 0213 1-3-61) も用意されている。またTeX には数式記号 ℏ {\displaystyle \hbar } (\hbar)が用意されている。ħ は「エイチバー」または「クロストエイチ」と発音される。

記号UnicodeJIS X 0213文字参照名称
ℎU+210E-ℎ
ℎPLANCK CONSTANT
ℏU+210F1-3-61ℏ
ℏPLANCK CONSTANT OVER TWO PI

歴史
黒体放射温度 8 mK の黒体ヴィーンプランクレイリーの3式の比較

1896年にヴィルヘルム・ヴィーン黒体放射におけるエネルギー分布に関するヴィーンの放射法則を提案した。この式はそれ以前の実験で得られていた高振動数領域では測定値をよく説明したが、新たに得られた低振動数の領域では合わなかった。1900年にプランクが低振動数領域でも測定値と一致するようにヴィーンの理論式を修正する形でプランクの法則を提案した[7][8][9]。プランクの理論式は、高振動数の領域ではヴィーンの理論式に移行する。レイリー卿は古典的なエネルギー等分配則から低振動数極限における近似式の形を提案し、1905年にジェームズ・ジーンズがその係数を正しく与えた。レイリー・ジーンズの法則と呼ばれるこの式は、プランクの理論式から導かれる低振動数極限の形と係数を含めて一致した。

プランクは彼の公式の理論的な説明を与える過程で、振動数 ν の光のエネルギーの受け渡しは大きさ hν を単位としてのみ起こり得る、という仮定をした[注 1][注 2]。この h が後にプランク定数と呼ばれるようになった普遍定数である[10]。実験結果と彼の理論式を比較してプランクは、h = 6.55×10?34 J s

と定めた[7]
光電効果

アルベルト・アインシュタインはプランクの理論の影響を受け、1905年、粒子のような性質を持つという光量子仮説を提唱し光電効果を説明した。光量子仮説では、プランクとは別の方法でエネルギー量子の存在を説明した[11]。アインシュタインの光電効果の考えはともかくとして彼が導いた式の正しさは、ロバート・ミリカンによって10年かけて行われた実験にて確かめられた。1916年にミリカンが報告したプランク定数の値は、h = 6.57×10?34 J s

であり、プランクが黒体放射から得た値とよく一致した[12]


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:38 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef