ビット
[Wikipedia|▼Menu]
.mw-parser-output .hatnote{margin:0.5em 0;padding:3px 2em;background-color:transparent;border-bottom:1px solid #a2a9b1;font-size:90%}

この項目では、デジタルコンピュータが扱うデータの最小単位について説明しています。その他の用法については「ビット (曖昧さ回避)」をご覧ください。

ビット (bit) は、情報理論コンピューティング、多くのデジタル通信における情報の基本単位(英語版)である。ビットは、コンピューティングでの二値ストレージやデジタル通信における二値シンボルのことも意味し、そのストレージ・シンボルには、(情報量の単位としての)1ビットの情報を記憶・符号化できる。二進数の1桁のことであり、その名前はbinary digitの2語の一部を組み合わせた語(かばん語)である[1]

情報理論では、1ビットは通常、等しい確率で0または1である二進数ランダム変数の情報量(情報エントロピー[2]、またはそのような変数の値が判明したときに得られる情報として定義される[3][4]。情報量の単位として、このビットはクロード・シャノンにちなんで名付けられたシャノンとも呼ばれる[5]。厳密には、ビットはデータ量(ストレージ量)の単位、シャノンは情報量の単位と区別するが、歴史的経緯により後者も前者と同じ単位(ビット)で表現され、誤りの可能性を無視してよければNビットのストレージによりNビットの情報量が保持できる。

1ビットの情報は、二進数の1桁として論理値を表し、2つののうち1つのみを持つ。2つの状態を持つ何らかの機構によって物理的に実装できる。この状態値は、最も一般的には「0」/「1」として表されるが、真/偽 (True/False)、yes/no、+/-、on/offなどの他の表現も可能である。この値と実際の物理的状態との対応は慣習の問題であり、同じデバイスやプログラム内でも異なる割り当てを使用することができる。

ビットの単位記号は、IEC 80000-13:2008 では "bit"、IEEE 1541-2002やIEEE Std 260.1-2004(英語版)では"b"(小文字のビー)を推奨している。一般に8桁の二進数のグループ(8ビット)は「1バイト (byte)」と呼ばれるが、歴史的にはバイトのサイズは厳密には定義されていない。
歴史

データを離散ビットによって表す方法は、バジル・ブション(英語版)とジャン=バプティスト・ファルコン(フランス語版)によって1732年に発明されジョゼフ・マリー・ジャカールが1804年に開発したパンチカードに使用され、後にセミオン・コルサコフ(英語版)、チャールズ・バベッジハーマン・ホレリス、およびIBMなどの初期のコンピュータメーカーにより採用された。また、鑽孔紙テープも同様の考えによるものであった。これら全てのシステムで、媒体(カードやテープ)は概念的に穴の位置の配列を保持していた。それぞれの位置における穴の有無が1ビットの情報を伝達した。ビットによる文章の符号化は、モールス信号(1844年)や、テレタイプストックティッカー(1870年)などの初期のデジタル通信機でも使用されていた。

ラルフ・ハートレーは、1928年に情報の対数的計量の使用を提案した[6]クロード・シャノンは、1948年の独創的な論文『通信の数学的理論』で「ビット」という言葉を初めて使用した[7][8][9]。シャノンは、その言葉は1947年1月9日にベル研究所ジョン・テューキーが書いたメモにおいてbinary information digit(二進数情報桁)を略してbitと書いたことに由来するとしている[7]。1936年にヴァネヴァー・ブッシュは、当時の機械式コンピュータで使用されていたパンチカードに保存できる情報量のことをbits of information(情報のビット)と書いた[10]コンラート・ツーゼによって構築された最初のプログラム可能なコンピュータは、数値に二進数表記を使用した。
物理的表現

ビットは、可能な2つの別個の状態(英語版)のいずれかを保持するデジタルデバイスやその他の物理システムによって格納できる。例えばフリップフロップの2つの安定状態、スイッチの2つの位置、電気回路で取り得る電圧または電流の2つの異なるレベル、2つの異なる光強度レベル、磁性または電気極性(英語版)の2つの方向、DNAの二本鎖の方向などである。

ビットはいくつかの形式で実装できる。ほとんどの最新のコンピュータデバイスでは、ビットは通常、電圧や電流のパルス、またはフリップフロップ回路の電気状態によって表される。

正論理を使用するデバイスの場合、1の数字値(または「真」(True) の論理値)は、0の表現よりもより高い正の電圧で表される。実際の電圧は、部品の耐久性やノイズ耐性など、部品の特性に応じて決定される。例えば、transistor-transistor logic (TTL) やその互換性のある回路では、デバイスの出力 (Output) は、0が0.4ボルト (V) 以下、1が2.6ボルト (V) 以上で表される。入力 (Input) は、0.8 V以下は0、2.2 V以上は1、として認識するように設定されている。
伝送と処理

ビットは、シリアル通信では一度に1つずつ、パラレル通信では複数のビットが同時に送信される。ビット演算では、ビットを1つずつ処理する場合がある。データ転送速度は、通常、kbit/sなどビット毎秒 (bit/s)にSI接頭語をつけた単位で表され、2進接頭辞は使用されない。
保存

ジャカード織機やバベッジの解析機関などの最も初期の非電子情報処理装置では、機械的なレバーやギアの位置、または紙のカードテープの特定の位置の穴の有無としてビットが保存されていた。ディスクリートロジック用の初期の電気デバイス(エレベータ交通信号機の制御回路、電話交換機、コンラート・ツーゼのコンピュータなど)は、ビットを電気リレーのオン・オフの状態として表していた。1940年代からリレーが真空管に置き換えられたとき、コンピュータの設計者は、水銀遅延線を伝わる圧力パルス、ウィリアムス管の内面に蓄積される電荷、フォトリソグラフィ技術によってガラスの円盤に印刷される不透明なスポットなど、様々な保存方法を実験した。

1950年代および1960年代に、これらの方法は、磁気コアメモリ磁気テープ磁気ドラムメモリ磁気ディスクなどの磁気記憶装置に大きく取って代わられた。磁気記憶装置では、ビットは強磁性フィルムの特定の領域の磁性の方向、またはある方向から他の方向への極性の変化として表現される。1980年代に開発された磁気バブルメモリでも同じ原理が使用され、鉄道の切符クレジットカードなど磁気ストライプカードに使用されている。

DRAMなどの現代の半導体メモリでは、ビットはコンデンサに保存された電荷の2つのレベルで表される。特定のタイプのプログラマブルロジックデバイスRAM では、回路の特定のポイントでの導電パスの有無によってビットが表される。光ディスクでは、ビットは反射面上の微小なピットの有無として表される。1次元バーコードでは、ビットは交互の黒と白の線の太さとして表される。
単位と記号

ビットは、国際単位系 (SI) では定義されていないが、国際電気標準会議 (IEC) が発行したIEC 60027では、二進数の単位の記号は bit であり、キロビットを表す kbit など全ての倍数で使用されると規定している[11]


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:43 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef