ナノ発電機
[Wikipedia|▼Menu]

ナノ発電機(ナノはつでんき、: nanogenerator)とは、微小な規模の物理現象から力学的エネルギー熱エネルギーを取り入れて電気に変換する技術である。ナノ発電機の典型的な方式には圧電型、摩擦帯電型、焦電型の三種がある。前二者は力学的エネルギーを利用し、後者は時間的な温度ゆらぎから熱エネルギーのハーベスティングを行う。
圧電型ナノ発電機

圧電型ナノ発電機(: piezoelectric nanogenerator)とは、圧電体ナノ構造を利用して環境に存在する運動エネルギーを電気エネルギーへと変換するエネルギーハーベスティングデバイスである。2006年に初めて発表されたナノ発電機はこの方式であった。「ナノ発電機」という語は本来利用するエネルギーの種類を限定するものではないが(太陽エネルギー熱エネルギーなども含む)、もっとも一般的にはこの方式を指す[1][2]

現在はまだ発展の初期段階にあるが、将来エネルギーハーベスタの微細化にブレークスルーをもたらし、ほかの種類のハーベスタと補い合って携帯電子機器の独立給電を発展させると期待されている。
原理.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

この節は検証可能参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方
出典検索?: "ナノ発電機" ? ニュース ・ 書籍 ・ スカラー ・ CiNii ・ J-STAGE ・ NDL ・ dlib.jp ・ ジャパンサーチ ・ TWL(2013年11月)
ナノワイヤが軸に直交する力を受けるタイプのナノ発電機の動作原理。 (a) AFM探針がナノワイヤの先端を左に掃引すると、ひずみの符号によって正負の帯電が生じる。探針-ナノワイヤ界面の特性のため、探針が負に帯電した部分と接している箇所でしか電流は流れない。(b) AFM探針の代わりに似た形状の格子を備えたカウンター電極を用いたもの。(a) と同様、界面を通した電子の移動が起きるのは負に帯電した部分のみである[2]ナノワイヤのそれぞれが軸に沿った力を受けるタイプのナノ発電機の動作原理[3]

ナノワイヤの軸に対して垂直な力がはたらく場合、平行な力がはたらく場合のそれぞれについて、圧電型ナノ発電機の動作原理を解説する。

軸に垂直な力がはたらく場合の動作原理を説明するため、垂直に伸びたナノワイヤの先端が左右に動く探針によって擦られているところを考える。外力によって圧電体ナノワイヤ全体に曲げ変形が生じると、圧電効果によってワイヤ内部に電場が作られる。この現象は結晶構造中の陽イオンと陰イオンとがひずみによって相対変位を得たことに起因する。曲げの外側に当たる部分は伸長(正ひずみ)を受けて正の電位を呈し、内側は逆に圧縮(負ひずみ)を受けて負の電位を呈する。この結果、ナノワイヤ上面に正電位と負電位の領域が現れる。一方、ナノワイヤ下端は接地されているため電位はゼロとなる。ナノワイヤに生じる最大の電圧は以下の式で求められる[4]。 V max = ± 3 4 ( κ 0 + κ ) [ e 33 − 2 ( 1 + ν ) e 15 − 2 ν e 31 ] a 3 l 3 ν max {\displaystyle V_{\text{max}}=\pm {\frac {3}{4(\kappa _{0}+\kappa )}}[e_{\text{33}}-2(1+\nu )e_{\text{15}}-2\nu e_{\text{31}}]{\frac {a^{3}}{l^{3}}}\nu _{\text{max}}}

ここで κ0 は真空の誘電率、 κ は誘電率、e33、e15、e31 は圧電定数、ν はポアソン比、a と l はそれぞれナノワイヤの半径と長さ、νmax はナノワイヤ先端の最大たわみである。

ナノワイヤの先端から一方向に電荷を送る役割を果たしているのは、カウンター電極とナノワイヤの間の電気的な接合である。肝要なのは接合がショットキー的であることで、接合がオーミックであれば先端に生じた電場は打ち消されてしまう。効果的なショットキー接合が形成されるのは、ナノワイヤ材料の電子親和力(Ea)がカウンター電極を構成する金属の仕事関数(φ)より小さい場合である。電子親和力が4.5 eV酸化亜鉛(ZnO)ナノワイヤならば、仕事関数が6.1 eVのプラチナが電極材料として適している。ショットキー接合には整流特性があるため、カウンター電極がナノワイヤ表面の負電位部と接しているときには電子が電極に移ることができるが、正電位部と接しているときには電流は流れない(これはn型半導体ナノワイヤの場合であり、p型ではホールキャリアとなるため逆の現象が起きる)。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:97 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef