ディスクブレーキ
[Wikipedia|▼Menu]
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

この記事は検証可能参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方
出典検索?: "ディスクブレーキ" ? ニュース ・ 書籍 ・ スカラー ・ CiNii ・ J-STAGE ・ NDL ・ dlib.jp ・ ジャパンサーチ ・ TWL(2021年9月)
フェラーリ・F430のブレーキキャリパー

ディスクブレーキ (disc brake) は、制動装置の一種であり、主に航空機自動車オートバイ自転車、新幹線などの鉄道車両に使用されている。車輪とともに回転する金属の円盤を、パッドなどで両側から挟み込むことによって制動する[1]。一般的に円盤はブレーキローター、挟み込む機構はブレーキキャリパーと称される。
特徴

ディスクブレーキの長所は、主要構造が外部に露出していることにより通風が良く、ローター自体の放熱性が良好であり、またパッドに貼られたライニング(摩擦材)や油圧ピストンもローターとは別体であるため、ドラムブレーキに比べてフェード現象が起こりにくい点である[2]。またブレーキローターにが付着した場合でも、ローターの回転で水を弾き飛ばしてしまうため[3]ウォーターフェード現象(水の介在で摩擦係数が大幅に低下する現象)が起こりにくいこと、摩耗粉がたまりにくく鳴きにくいこと、開放状態でローターとパッド間の隙間が少なく制動初期からロックまでコントロールしやすく、左右輪の制動力の立ち上がりに時間差が出る片効きや、ブレーキシューの過剰な自己サーボ効果(自己倍力作用)によるカックンブレーキにならない、安定した制動力が得られる等の点がある。

その反面、ドラムブレーキのリーディングシューのような自己サーボ効果がなく、摩擦面積も小さいので、同じ直径のドラムブレーキと比較した場合に制動力(拘束力)が弱い[4]。そのため、自動車においては、別途負圧油圧空気圧を利用した倍力装置を付加し、ブレーキペダル踏力を軽減しているものが多い。そのため装置全体として見ると構造が複雑になり、重量も重くなってしまう。吸気管の負圧を利用したものは、エンジンが停止しているときには十分な制動力が得られないので、通常よりも大きなペダル踏力が必要となる。その他の方式でも、走行中に何らかの原因で倍力装置が失陥した場合、かなり強く踏み込まないと停止できない場合がある。

また、ドラムブレーキのシューライニングに比べてブレーキパッドの面積を大きくとることが難しく、制動力を大きくするには、摩擦材やローター材の変更、ローターの大径化、ブレーキキャリパーのマルチポット化などが必要であり、高コスト化と重量増は避けられない。モータースポーツ用にはカーボンファイバー製のローターもあるが、一般市場に流通するような性格のものではない。
構造自動車用ベンチレーテッドディスクローターの摩擦面に溝彫り加工を行った例

構造は、車輪と一緒に回転するブレーキローターを、両側からブレーキキャリパーに組み込まれたブレーキパッドで押さえつけることで摩擦力を発生し、運動エネルギー熱エネルギーに変換して制動する仕組みである[5]。パッドを押さえつける力を伝達する構造は、自動車用では主にパスカルの原理を用いてマスターシリンダーからの入力でピストンを動作させる液圧式(Hydraulic)が大半で、バスダンプカー、大型トレーラー、鉄道車両などでは空気圧によってパッドを押しつける空気式が多い。

ブレーキ・キャリパーはブレーキ・パッドおよびブレーキ・ピストンの支持器である。

キャリパーには固定型(対向ピストン)と浮動型(フローティングキャリパー)の2種類がある。どちらも、キャリパーに組み込まれたピストンを作動させて、ローターの両側にあるブレーキパッドをローターに押し付けて制動力を得るが、固定型は、ローターの両側にピストンがあるのに対し、浮動型は、片側にしかピストンがなく、ピストンが無い側のパッドはキャリパー自身が動くことによって動作させるという違いがある[6]

一般的に固定型キャリパーは浮動型キャリパーより構造が複雑で値段も高価である。.mw-parser-output .tmulti .thumbinner{display:flex;flex-direction:column}.mw-parser-output .tmulti .trow{display:flex;flex-direction:row;clear:left;flex-wrap:wrap;width:100%;box-sizing:border-box}.mw-parser-output .tmulti .tsingle{margin:1px;float:left}.mw-parser-output .tmulti .theader{clear:both;font-weight:bold;text-align:center;align-self:center;background-color:transparent;width:100%}.mw-parser-output .tmulti .thumbcaption{background-color:transparent}.mw-parser-output .tmulti .text-align-left{text-align:left}.mw-parser-output .tmulti .text-align-right{text-align:right}.mw-parser-output .tmulti .text-align-center{text-align:center}@media all and (max-width:720px){.mw-parser-output .tmulti .thumbinner{width:100%!important;box-sizing:border-box;max-width:none!important;align-items:center}.mw-parser-output .tmulti .trow{justify-content:center}.mw-parser-output .tmulti .tsingle{float:none!important;max-width:100%!important;box-sizing:border-box;align-items:center}.mw-parser-output .tmulti .trow>.thumbcaption{text-align:center}}浮動型キャリパーの動作ブレーキが作動してない状態。ピストン(緑色)の右側にあるパイプ(茶色)からブレーキ液(赤色)が送り込まれる。ブレーキ作動直後。ブレーキ液(赤色)が増大することによってピストン(緑色)が左方向へ進む。さらに進んだ状態。浮動状態であるキャリパー(灰色)も、ブレーキ液(赤色)に押されて右へ進む。

ローターの材質は自動車ではダクタイル鋳鉄 (FCD)ねずみ鋳鉄 (FC)[7]、@media screen{.mw-parser-output .fix-domain{border-bottom:dashed 1px}}航空機用では鋳鉄の他に炭素繊維強化炭素複合材料(CCコンポジット)製のものが存在する[注 1]。オートバイではサビや汚れに対する考慮からマルテンサイトステンレス鋼のものが主流である。[要出典]

付着したブレーキパッドの摩擦粉の除去やローターの放熱・冷却のため、ローターの面に穴開けや溝掘りなどの加工を施すことがあり、前者をドリルドローター (Drilled Rotor)、後者をスリットローター (Slit Rotor)[注 2]と称する。また、ローターの中には、放熱効果を高めるため、ディスクを2枚以上としてその間にフィンを挟んだベンチレーテッドディスクブレーキ (Ventilated Disc Brake)も存在し、これに対して一枚板のものはソリッドディスクブレーキ (Solid Disc Brake) と称して区別される[8]
倍力装置

制動力を確保するために必要となる倍力装置には、次の3種類の主な方式がある。ブレーキブースターやバキュームサーボ (en:Vacuum servo) とも呼ばれる場合もある。
負圧倍力式
ガソリンエンジンスロットルバルブの働きで吸気管内に発生する負圧を利用するタイプで、小型自動車では最もポピュラーな方式である。バキュームサーボ、あるいはブレーキサーボと呼ばれることもある。スロットルバルブが必要無いディーゼルエンジンでは十分な吸気管負圧が得られないため、エンジンの駆動力を用いて真空ポンプを作動させ、負圧を確保している。
空圧倍力装置
圧縮機により圧縮した空気を使用するタイプである。十分な負圧が得られないディーゼルエンジン車に使われる例が多い。圧縮機の駆動力や設置スペースの余裕が必要になるため、日本国内では主に車両総重量8t級以上のトラックや中型以上のバスで採用されている。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:111 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef