ツェルメロ=フレンケル集合論
[Wikipedia|▼Menu]

集合論において、ツェルメロ=フレンケル集合論(: Zermelo-Fraenkel set theory)とは、ラッセルのパラドックスなどのパラドックスのない集合論を定式化するために20世紀初頭に提案された公理系である。名前は数学者のツェルメロフレンケルにちなむ。歴史的に議論を呼んだ選択公理 (AC) を含むツェルメロ=フレンケル集合論は公理的集合論の標準形式であり、今日では最も一般的な数学の基礎となっている。選択公理を含むツェルメロ=フレンケル集合論はZFCと略される。Cは選択 (Choice) 公理を[1] 、 ZFは選択公理を除いたツェルメロ (Zermelo)=フレンケル (Fraenkel) 集合論の公理を表す。
概要

ツェルメロ=フレンケル集合論は、単一の原始概念(英語版)の形式化、すなわち整礎な純粋集合(英語版)の概念の形式化を目的としているため、議論領域内のすべての対象 (entity) はそのような集合となる。したがって、ツェルメロ=フレンケル集合論における公理は純粋集合のみに言及し、そのモデルにアトム(英語版)(urelement)[注釈 1] が含まれないようにしている。さらに、真のクラス[注釈 2]は間接的にしか扱えない。具体的には、ツェルメロ=フレンケル集合論では、全体集合(すべての集合を含む集合)の存在も無制限の内包も許容しないため、ラッセルのパラドックスを回避できる。フォン・ノイマン=ベルナイス=ゲーデル集合論(NBG) は、ツェルメロ=フレンケル集合論の保存拡大としてよく用いられており、真のクラスを明示的に扱うことができる。

ツェルメロ=フレンケル集合論の公理には多くの同値な定式化が存在する。ほとんどの公理は、他の集合から定義された特定の集合の存在を主張する。たとえば対の公理は、任意の2つの集合 a {\displaystyle a} と b {\displaystyle b} が与えられたとき、 a {\displaystyle a} と b {\displaystyle b} のみからなる新しい集合 { a , b } {\displaystyle \{a,b\}} の存在を主張する。ほかには集合の元の属性を説明する公理もある。公理の目標は、フォン・ノイマン宇宙(累積階層とも呼ばれる)におけるすべての集合の集まりに関する命題とみなしたときに、各公理が真であることである。厳密には、ZFCは一階述語論理における1ソート理論である。シグネチャとして、等号と、単一の原始的な二項関係である元の帰属関係がある(通常 ∈ {\displaystyle \in } で表される)。 a ∈ b {\displaystyle a\in b} は集合 a {\displaystyle a} が集合 b {\displaystyle b} の元である(「 a {\displaystyle a} が b {\displaystyle b} に含まれる」と表現することもある)ことを意味する。

ツェルメロ=フレンケル集合論の超数学は広く研究されてきた。この分野で確立された画期的な結果は、選択公理とZF公理の論理的独立性およびZFCと連続体仮説の独立性が示されたことである。ゲーデルの第二不完全性定理が示すように、ZFCなどの理論の無矛盾性はその理論自体の中で証明することはできない。
歴史

集合論の現代的な研究は、1870年代にカントールデーデキントによって始められた。しかし、ラッセルのパラドックスなどの素朴集合論におけるパラドックスが発見され、これらのパラドックスのない、より厳密な形式の集合論の探求につながった。

1908年、ツェルメロは最初の公理的集合論であるツェルメロ集合論を提案した。しかし、1921年にフレンケルがツェルメロに宛てた手紙で最初に指摘したように、当時ほとんどの集合論の数学者が当然と考えていた基数 ℵ ω {\displaystyle \aleph _{\omega }} と集合 { Z 0 , P ( Z 0 ) , P ( P ( Z 0 ) ) , P ( P ( P ( Z 0 ) ) ) , . . . } {\displaystyle \{Z_{0},{\mathcal {P}}(Z_{0}),{\mathcal {P}}({\mathcal {P}}(Z_{0})),{\mathcal {P}}({\mathcal {P}}({\mathcal {P}}(Z_{0}))),...\}} の存在を、この理論では証明できなかった。ここで、 Z 0 {\displaystyle Z_{0}} は任意の無限集合であり、 P {\displaystyle {\mathcal {P}}} は冪集合を得る操作を表す[2]。さらに、ツェルメロの公理の1つは、「明確な (definate)」属性の概念を提起したが、その操作上の意味は明らかでなかった。 1922年、フレンケルとスコーレムは、原子論理式を帰属関係と同一性の表現に限定した一階述語論理における論理式として定式化できるものとして、「明確な」属性を操作することをそれぞれ独立に提案した。彼らはまた、分出公理置換公理に置き換えることを独立に提案した。これらの公理と(フォン・ノイマンによって最初に提案された)正則性公理[3]をツェルメロ集合論に追加すると、 ZFで表される公理系が得られる。選択公理(AC)またはそれと等価な命題をZFに追加すると、ZFCが導かれる。
公理

ZFCの公理には多くの同値な定式化が存在する[4]。以下に示す公理は、 Kunen (1980) に従った。公理自体は一階述語論理の記号で表される。論理式に付随する説明は理解を助けるためのものである。

ZFCのどの定式化でも、少なくとも1つの集合が存在することが示される。 Kunenは以下に示す公理のほかに集合の存在を直接主張する公理を含めたが、存在を強調するためのものであり[5]、公理系としては必須ではない。[注釈 3]
1. 外延性の公理詳細は「外延性の公理」を参照

同じ元を持つ場合、2つの集合は等しい(同じ集合である)。 ∀ x ∀ y [ ∀ z ( z ∈ x ⇔ z ∈ y ) ⇒ x = y ] . {\displaystyle \forall x\forall y[\forall z(z\in x\Leftrightarrow z\in y)\Rightarrow x=y].}

この公理の逆は、等式の置換特性に由来する。等号" = {\displaystyle =} "を含まない論理体系の場合、 x = y {\displaystyle x=y} は次の式の略語として定義できる[6]

∀ z [ z ∈ x ⇔ z ∈ y ] ∧ ∀ w [ x ∈ w ⇔ y ∈ w ] . {\displaystyle \forall z[z\in x\Leftrightarrow z\in y]\land \forall w[x\in w\Leftrightarrow y\in w].}

この場合、外延性の公理は次のように定式化できる。 ∀ x ∀ y [ ∀ z ( z ∈ x ⇔ z ∈ y ) ⇒ ∀ w ( x ∈ w ⇔ y ∈ w ) ] , {\displaystyle \forall x\forall y[\forall z(z\in x\Leftrightarrow z\in y)\Rightarrow \forall w(x\in w\Leftrightarrow y\in w)],}

この式は、 x {\displaystyle x} と y {\displaystyle y} が同じ元を持つ場合、それらは同じ集合に属することを意味する[7]


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:89 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef