ターボファンエンジン
[Wikipedia|▼Menu]
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

この記事は検証可能参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方
出典検索?: "ターボファンエンジン" ? ニュース ・ 書籍 ・ スカラー ・ CiNii ・ J-STAGE ・ NDL ・ dlib.jp ・ ジャパンサーチ ・ TWL(2015年7月)
2軸式ターボファンエンジンのアニメーション
A. 低圧軸
B. 高圧軸
C. 静止部
1. ナセル
2. ファン
3. 低圧圧縮機
4. 高圧圧縮機
5. 燃焼器
6. 高圧タービン
7. 低圧タービン
8. コアノズル
9. ファンノズル

ターボファンエンジン(Turbofan engine)は、ジェットエンジンの一種[1]。コアとなるターボジェットエンジンファンを追加したものである[1][2][3]。ファンを用いることにより、ターボジェットと異なり、コアエンジン部を迂回するエアフローが設定され[1][3]、エンジン排気のエアフローを増大させ、ジェットエンジン推力の増大および効率化が図られる[1][2]

1960年代より実用化が行われ、現代のジェットエンジンの主流となっているものである[2]
概要

ターボジェットエンジンは、燃焼室で燃焼した高熱排気をノズルより噴出させており、この高熱排気で高速の噴流がエンジンの推進力となる[1][2]。しかしジェットエンジンにおける推進効率は、空気抵抗との関係により、排気の速度が飛行速度より若干速い程度の速度である場合に最も良いものとなる。このため、亜音速で飛行するジェット機の場合は、機体速度よりもジェット噴流がかなり高速になり、推進効率が悪くなる。

この問題を解決するために考えられたのが、タービンから得られる軸出力をコンプレッサーの駆動に用いるのみならず、プロペラの駆動にも用いるターボプロップエンジンである。ただしプロペラの速度が音速に達するあたりから衝撃波が発生し、効率が低下する(機体の速度が700km/hに達した前後から、プロペラの速度は音速に達し、効率が悪くなる)。よって高亜音速機にとっては効率的ではない。また全ての噴流がタービンに吸収される訳ではなく、一部はそのまま後方に噴射される。多少の推力向上にはなるものの、相変わらず高速の噴流は効率が悪い事に変わりは無い。

そのため、開発されたのがターボファンエンジンである。基本的な構造は、コアエンジンとなるターボジェットのコンプレッサーの前部にファンを追加したものである[注 1]。ファンはコンプレッサーと同じく、タービンと同軸であり、タービン出力によって駆動される[注 2]。つまりターボプロップエンジンのプロペラの直径を小さくして、ジェットエンジンに内蔵したようなものがターボファンだと捉えればわかりやすい[注 3]

ターボプロップエンジンにおいては、プロペラの回転によって得られた空気噴流は、純粋に推進力となる。しかしターボファンエンジンの場合は、空気噴流の一部(コンプレッサーの直径相当部分)はコンプレッサーを通るが、一部(コンプレッサーの直径より大きくなっている部分)はコンプレッサーを通らない。コンプレッサーを通った空気噴流は、コアエンジンとなるターボジェットを通して高温高速噴流となる一方、コンプレッサーを通らなかった空気噴流は低温低速噴流となる。そして、最終的にそれらが混ぜ合わさる事となり、噴流の速度が平均化される。これにより、その飛行機にとって最適な速度の噴流(ターボジェットの場合よりも低速、ターボプロップの場合よりも高速)が得られる。またターボジェットの場合よりも噴流の量も増加し、出力が向上する。

ジェットエンジンの推力は、排気ジェット速度とその空気流量の積に比例する。一方でジェットエンジンの燃料流量は、排気ジェット速度の2乗とその空気流量の積に比例して増す。

ここで、推力が同じターボジェットエンジンとターボファンエンジンがあるとした場合、極端な想定ではあるが、ターボファンの排気噴流速度がターボジェットのそれの1/2だとすると、ターボファンの燃料流量はターボジェットに比べて1/4になる[4]


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:35 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef