タンパク質
[Wikipedia|▼Menu]
ミオグロビンの3D構造。αヘリックスをカラー化している。このタンパク質はX線回折によって初めてその構造が解明された。

タンパク質(タンパクしつ、蛋白質、: protein [?pro?ti?n]: Protein [prote?i?n/protain])とはアミノ酸状に多数連結(重合)してできた高分子化合物生物の重要な構成成分のひとつである[1]

構成するアミノ酸の数や種類、また結合の順序によって種類が異なり、分子量約4000前後のものから、数千万から数億単位になるウイルスタンパク質まで多くの種類が存在する[1]

タンパク質のうち、連結したアミノ酸の個数が少ないものをペプチド、ペプチドが直線状に連なったものをポリペプチドと呼びわける[2]ことも多いが、明確な基準は無い。

タンパク質は、炭水化物脂質とともに三大栄養素と呼ばれ[3]、各々の英単語の頭文字を取って「PFC」とも呼ばれる。タンパク質は筋肉や骨、皮膚などをつくる役割も果たしている[3]
名称

ドイツ語: Protein、英語: protein、フランス語: proteine [pr?tein]スペイン語: proteina はギリシア語で「第一の」を意味する pr?teios から採られた。1838年にオランダの化学者ヨハンネス・ムルデルが、スウェーデンの化学者イェンス・ベルセリウスから助言を受け、窒素を非常に多く含む生物の基本要素と考えてこの名称をつけた[4]

「蛋白質」の「蛋」とはのことを指し、卵白(蛋白)がタンパク質を主成分とすることによる。これは Protein がドイツ語でまた Eiweis(卵白)とも訳され、これが日本語に直訳されたと考えられる[4]

「蛋」という漢字は、例えば皮蛋のように中国ではよく使われる字であるが、日本ではあまり普及していない。そのため栄養学者川島四郎が「蛋白質」では分かりにくいとして「卵白質」という語を使用したが、一般的に利用されるにはいたらなかった。現在では、栄養学分野では平仮名の「たんぱく質」、生物学では片仮名の「タンパク質」が使われる傾向にある[5]
構造詳細は「タンパク質構造」を参照

タンパク質は以下のような階層構造をもつ。

一次構造 - アミノ酸配列

二次構造 - αヘリックス、βシート、ランダム構造

三次構造 - タンパク質全体の構造

四次構造 - 多量体

また、アミノ酸のみで構成された種類は単純タンパク質と言い、構成成分にアミノ酸以外のものが含まれる場合は複合タンパク質と呼ばれる[1]
アミノ酸詳細は「アミノ酸」を参照

食物として摂取したタンパク質は消化の過程でアミノ酸にまで分解され吸収され、体内で再びタンパク質へ構成される。このタンパク質を作る基本物質であるアミノ酸は、炭素元素を中心に水溶液中でプラスに荷電するアミノ基とマイナスに荷電するカルボキシ基を持ち、残り2箇所に水素と側鎖と呼ばれる分子構造を持つ[2]。タンパク質をつくるアミノ酸は20種類あるが、これらの差は側鎖の形状の違いで分けられる[2]
一次構造詳細は「一次構造」を参照

タンパク質はアミノ酸のポリマーである。その基本的な構造は2つのアミノ酸の一方のカルボキシ基 (?COOH) と他方のアミノ基 (?NH2) が水分子を1つ放出する脱水縮合ペプチド結合)を起こして酸アミド結合 (?CO?NH?) を形成することでできる鎖状である[2]。また、システイン残基がしばしばジスルフィド結合 (S?S) の架橋構造をつくることもある。このポリマーの末端の結合していない部分は、アミノ基側をN末端、カルボキシ基側をC末端とよぶ[6]。この時、一列のアミノ酸の脇には側鎖が並ぶ事になり、この配列の数や順序を指してタンパク質の一次構造とよぶ[2]

アミノ酸の配列は、遺伝子の本体である物質・DNA塩基配列により決定される[6](3個のヌクレオチドにより、1つのアミノ酸が指定される)。ペプチド結合してタンパク質の構成成分となった単位アミノ酸部分 (?NH?CH(?R)?CO?) をアミノ酸残基と呼ぶ。それぞれの残基は、側鎖置換基 R の違いによって異なる性質をもつ。
二次構造詳細は「二次構造」を参照

鎖状のポリペプチドは、それだけではタンパク質の機能を持たない。一次構造で並んだ側鎖が相互作用で結びつき、ポリペプチドには決まった2種類の方法で結びついた箇所が生じる。1つはαヘリックス(螺旋構造)と呼ばれ、あるアミノ酸残基の酸素と、4つ離れた残基の水素の結びつきを基礎に、同じ事が順次起こってポリペプチドにらせん構造をつくる[7]。もう1つのβシートとは、ポリペプチドの一部が折り畳まれ、それぞれの水素と酸素残基が結合してつくるシート状の構造である[7]。これらは二次構造と呼ばれる[8]水素結合ファンデルワールス力などによるこの畳み込みはフォールディング (folding) とも呼ばれる[9]。結合エネルギーが比較的低いため、簡単な処理によって構造を変性させやすい[8]
三次構造リゾチームのリボンモデル。αヘリックスが赤、βシートは黄色で表される。詳細は「三次構造」を参照

タンパク質はαヘリックスやβシートといった二次構造の特定の組み合わせが局部的に集合し形成されたαヘアピンやβヘアピンなどの超二次構造と呼ばれる単位ができて核に纏まったドメインをとり、タンパク質全体としての三次構造をとる[10]。これは立体的に見てまとまった領域である。三次構造は側鎖間の相互作用によって安定する。特殊な塩基間の水素結合やシステイン残基間のジスルフィド結合静電引力などが安定化に寄与するが、特に疎水結合が大きく影響する。そのため有機溶媒界面活性剤などで疎水結合を切ると三次構造が壊れ、タンパク質の変性が起こりやすい[10]。三次構造の立体を図案化し描かれたものは「リボンモデル」と言う[7]
四次構造ヘモグロビンのリボンモデル。2種2個ずつのグロビンサブユニットが計4つ集まり、四次構造を作っている。詳細は「四次構造」を参照

タンパク質の中には複数(場合によっては複数種)のポリペプチド鎖が非共有結合でまとまって複合体(会合体)を形成しているものがあり、このような関係を四次構造と呼ぶ[11]


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:96 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef