スペクトル分類
[Wikipedia|▼Menu]
.mw-parser-output .hatnote{margin:0.5em 0;padding:3px 2em;background-color:transparent;border-bottom:1px solid #a2a9b1;font-size:90%}

この項目では、恒星のスペクトル分類について説明しています。小惑星のスペクトル分類については「小惑星のスペクトル分類」をご覧ください。
HR図スペクトル型YSOT Tauri型星Herbig Ae/Be型星褐色矮星準褐色矮星白色
矮星



準矮星B主系列星OBAFGK準巨星巨星バリウム星赤色
巨星
青色
巨星
輝巨星超巨星赤色
超巨星
LBVWR型星極超巨星


スペクトル分類(スペクトルぶんるい、: spectral classification)は、恒星の分類法の一つである。スペクトル分類によって細分された星のタイプをスペクトル型(: spectral type)と呼ぶ[1]。恒星から放射された電磁波を捉え、スペクトルを観察することによって分類する。恒星のスペクトルはその表面温度や化学組成により変わる。表面温度を元にして分類する狭義のスペクトル型(ハーバード型[2])と、星の本来の明るさを示す光度階級 (luminosity class) があり、両者を合わせて2次元的に分類するMK分類[1]が広く用いられている。これは、この分類を提唱した天文学者のウィリアム・ウィルソン・モーガンとフィリップ・チャイルズ・キーナン(英語版)の名前に由来する。

恒星のスペクトルのそれぞれの線は、特定の元素分子の存在を示しており、その特徴の強度はそれらの存在量を示している。異なるスペクトル線の強度は主に恒星の光球の温度に左右されるが、いくつかの場合では元素の実際の存在量の違いを反映している場合がある。高温の天体では水素の吸収線が、低温の天体ではその他の重元素による吸収線が強く現れる傾向にある。また特に低温の星では、原子に加えて分子の吸収線も見られるようになる[3]

ほとんどの星は、MK分類を用いて分類されている。これは O、B、A、F、G、K および M を用いた分類を用いており、O型が最も高温で、M型が最も低温である。アルファベットの順番がバラバラであるのは、スペクトル型と天体の温度が対応していると判明したのがアルファベット順の分類が開発された後であり、後に温度の順番に並べ替えて現在の様式に整理されたという歴史的な経緯に由来する。それぞれの文字の分類はさらに0から9を用いて細分化され、この中では0が最も高温で、9が最も低温であることを示す。例えば、A8、A9、F0、F1 という分類は高温から低温になるように並んでいる。この分類法は、古典的な恒星の分類には当てはまらないその他の星や恒星に似た天体を分類できるように拡張されている。例えば白色矮星を表す D、炭素星を表す S や C などが加えられた。また、褐色矮星などの低温の天体のスペクトルとして、L、T、Y が導入されている。

MK分類ではローマ数字を用いた光度階級も合わせて用いられており、これは恒星のスペクトルにおける特定の吸収線の線幅に基づいて定められている。線幅は恒星大気の密度によって変化するため、恒星が矮星(主系列星)か巨星であるかを区別することができる。光度階級では、極超巨星に対しては 0 もしくは Ia+、超巨星に対しては I、明るい巨星に対しては II、通常の巨星に対しては III、準巨星に対しては IV、主系列星に対しては V、準矮星に対しては sd もしくは VI、そして白色矮星に対しては D もしくは VII が割り当てられている。この記法をすべて用いた場合の太陽のスペクトル型は G2V であり、これは表面温度が 5800 K 程度の主系列星であることを意味する。
伝統的な色による分類温度と色の三角グラフ

伝統的な色の記述は恒星のスペクトルの極大のみを考慮していた。しかし実際には、恒星はスペクトルのすべての範囲で放射をしている。すべてのスペクトルの色が合わさると白く見えるため、人間の目が実際に感じる見かけの色は、伝統的な色の記述が示すものよりもずっと明るく見える。この「明度」の特性を考慮すると、単純にスペクトル中で極大となる波長の色を割り当てる方法は、恒星の分類において混乱の元となりうる。薄明かりの中での色とコントラストの錯覚を除けば、緑色や藍色、紫色に見える星は存在しない。赤色矮星は濃いオレンジ色であるし、褐色矮星は文字通りの褐色には見えず、近傍にいる観測者には理論上は薄い灰色に見えると考えられる。
現在の分類ハーバード分類に基づきO型からM型まで並べられた恒星

現在の分類体型は、MK分類 (Morgan?Keenan classification) として知られている[1]。それぞれの恒星は、従来からあるハーバード分類によるスペクトル型と[2]、ローマ数字を用いた光度階級[4]が割り当てられ、これが恒星のスペクトル型を構成する。

そのほか、現在の測光システム[5]、例えばジョンソンのUBVシステムなどは、色指数に基づいた分類となっている。これは、3つやそれ以上の色での等級の差の測定を元にしている。これらの数値は、U-V や B-V といった表記が用いられ、2つの標準的なフィルターを通した色等級の差を表している。例えばUは紫外線 (Ultraviolet)、Bは青 (Blue)、Vは可視光 (Visual) という風にである[6][注 1]
ハーバード分類

ハーバード分類は、天文学者アニー・ジャンプ・キャノンによる1次元の分類である。キャノンは、それまでに存在したアルファベットを用いた分類を並べ直し、単純化した。恒星はそのスペクトルの特徴に応じてアルファベット1文字でグループ分けされ、オプションとして数字で細分化される。主系列星の表面温度は約 2000 K から 50000 K までの値を取りうるが、より進化した恒星は 100000 K を超える場合もある。物理的には、この分類は恒星大気の温度を示しており、通常は温度が高いものから低いものへの順番で並べられる。

有効温度
[7][8]色度
(ベガ基準)
[9][10][注 2]質量
(M?)
[注 3][7][11]半径
(R?)
[注 3][7][11]光度
(L?)
[注 3][7][11]水素線存在割合[12]
O? 30,000 K青? 16 M☉? 6.6 R☉? 30,000 L☉弱い~0.00003%
B10,000?30,000 K青白2.1?16 M☉1.8?6.6 R☉25?30,000 L☉中間0.13%


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:188 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef