コヒーラ検波器
[Wikipedia|▼Menu]
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

この記事は検証可能参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方
出典検索?: "コヒーラ検波器" ? ニュース ・ 書籍 ・ スカラー ・ CiNii ・ J-STAGE ・ NDL ・ dlib.jp ・ ジャパンサーチ ・ TWL(2019年3月)

この記事には独自研究が含まれているおそれがあります。問題箇所を検証出典を追加して、記事の改善にご協力ください。議論はノートを参照してください。(2019年3月)
初期型コヒーラ(検証用復元品)

コヒーラ検波器(コヒーラけんぱき)は、無線通信の黎明期に発明された電磁波検出装置である。1890年金属粉末の電気伝導性を研究していたエドアール・ブランリーによって金属粉末に高周波が到来すると電気抵抗が激減、直流電流が流れる現象が確認された。この現象をリヴァプール大学教授のオリバー・ロッジ検波器に応用、1894年王立アカデミーで発表した。現象の発見当時、その現象は高周波により電極と金属粉末同士が「密着する」ためであると考えられ、"cohere"(密着する)から「コヒーラ」と呼ばれるようになった。
概要

普通、一対の金属電極間に金属の粒、粉、小片など(以下金属粉とする)をゆるく挟み込み、絶縁容器などに納めた構造のものをコヒーラという(ブランリー本人はコヒーラではなく、「ラジオコンダクタ」と命名したとされる。実用に供されるものはガラスなどの絶縁管に電極と金属粉を納めた構造のものが一般的であるため、彼の名にちなんで「ブランリー管」ともいう)。通常、コヒーラの電極間の電気抵抗は高抵抗値を示すが、電磁波を受けると電気抵抗が減少、ほぼ短絡状態となり不可逆となる。すなわちコヒーラは電磁波を電極間の電気抵抗値の変化として検出するものである。電極間の電気抵抗が減少して不可逆となる状態をコヒーアという。コヒーアを解除して電極間の電気抵抗値をもとの高抵抗値に復帰させるためには、コヒーラに機械的な振動や衝撃を与える必要がある。コヒーラに機械的な振動や衝撃を与える操作をデ・コヒーアと呼び、機械的な振動や衝撃を与える機構をデ・コヒーラという。コヒーラのみをコヒーラ検波器と呼ぶこともあるが、コヒーラとデ・コヒーラは普通、一体として用いられることから、コヒーラとデ・コヒーラをあわせた装置全体をコヒーラ検波器と呼ぶことが多い。
動作

コヒーラの動作は長年、謎あるいは仮説とされていた部分が多く、20世紀末になっても試行錯誤による改良が種々試みられていたが[1][2][3][3][4]2017年現在、ほぼその全容が解明されている。

すなわち巨視的には電極間に高周波電力を印加すると、電極と金属粉、金属粉同士の微小な接触部分に生じる電界集中により、それぞれの表面を覆っている、自然に、もしくは人工的に形成された、通常は高い電気抵抗を有するごく薄い金属化合物膜(酸化水酸化膜など)が電圧により降伏、続いてこの部分に集中する電流によって金属化合物膜が破壊され、下地の金属同士が接合してほぼ短絡状態となることによる。従って高周波電力のみならず、静電気などに対しても動作する。デ・コヒーアにより機械的にこの接合が解除され、もとの高電気抵抗値となる[5][6]

また微視的には、コヒーアの開始(導通の開始)はショットキー接合部の格子欠陥によるヒステリシス現象による。すなわち金属化合物膜は微細孔を多く持つ薄膜、すなわち半導体であり、その微細孔の内側表面には多くの格子欠陥があり、集中した電流によって発生する、ショットキー障壁を越えた余分なエネルギーを持つ電子によって、金属化合物の価電子帯から励起された電子がこの格子欠陥部に形成された高密度の界面準位にトラップ、このトラップされた電子の持つ電荷により、ショットキー障壁はトンネル効果の発生する厚さ以下となり、いわゆるトンネルリングスポットを通して通電するようになるためであることがわかった[7][8]。また微小な接触部分に生じる金属接合についても、従来の仮説(溶着現象)が実験によりほぼ確かめられている[9]


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:19 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef