ケスラーシンドローム
[Wikipedia|▼Menu]

ケスラーシンドローム(Kessler Syndrome)は、スペースデブリの危険性を端的に説明するシミュレーションモデル。提唱者の一人であるアメリカ航空宇宙局(NASA)のドナルド・J・ケスラー(英語版) にちなんでこう呼ばれるようになった。
概要

スペースデブリが互いに、あるいは人工衛星などに衝突すると、それにより新たなデブリが生じる。デブリの空間密度がある臨界値を超えると、衝突によって生成されたデブリが連鎖的に次の衝突を起こすことで、デブリが自己増殖するような状態が存在するかもしれない。ケスラーシンドロームはこの状態の生起を許す、スペースデブリの挙動を定式化したモデルのうちの幾つかが示すシミュレーション結果の一つ。
術語

デブリ同士の衝突によって加速度的にデブリが増えるという現象はケスラーによって1970年代から提唱されていたが[1]、ケスラー自身はこの現象を collisional cascading[2]もしくは runaway[3]と表現している。また、他の研究者も a self sustained chain reaction[4]、runaway growth[5]などと呼び、ケスラーシンドロームという言葉は使っていない。ケスラーシンドロームという言葉が使われた比較的古い非技術文書には、1997年の八坂哲雄の『宇宙のゴミ問題』[6]があり、技術文書では2001年の第3回欧州デブリ会議の会議紀要で五家建夫らが使用した例がある[7]。2007年にはいると、一般向けニュース記事でも紹介するものが現れるようになり[8]、デブリの危険性を主張し始めた。
モデル
簡単なモデル

軌道物体が空間に一様に分布していると仮定した場合、軌道物体が大気抵抗によって大気圏に落下突入して消滅する頻度は、軌道物体の空間密度に比例する。一方、軌道物体が衝突する確率は、軌道物体の空間密度の 2 乗に比例する[4]。そのため、衝突によって新たなデブリが生成するならば、軌道物体の密度がある一定の臨界密度を超えると、デブリの生成速度は消滅速度を上回る。
現実的なモデル

現実的にケスラーシンドロームが発生するかどうかを考えるには、以下のようなデブリの生成要因と消滅要因を考慮する必要がある[9]
生成要因


発射(ロケットの高段部分、ペイロードなどを含む)

運用(固体ロケットモータの燃焼残渣物など)

爆散(ブレークアップ; 爆発および衝突による破砕)

剥離(塗料など)

漏出(原子炉衛星の冷却液など)

消滅要因


大気抵抗およびその他の摂動

人為的な除去

墓場軌道などへの移動

破砕(大きな物体はなくなる)

1991年にケスラーは、生成要因として衝突による爆散、消滅要因として大気抵抗を考慮して臨界密度を計算した[2]。この結果、約十数年に一度、低軌道(高度約 1400 km 以下)のどこかで人工衛星とデブリが衝突する程度の密度で、デブリの生成速度は消滅速度を上回ることを示した。また、同時に高度 1000 km 近傍と 1500 km 近傍では、新たなデブリの生成速度はすでにデブリの自然な消滅速度を超えているとの計算結果を得た。
他のモデルとの対比
小惑星帯の形成

小惑星帯は、木星の近傍で成長しつつあった微惑星が、衝突によって次々に破砕されて形成されたというモデルがある[10]。ケスラーは衝突によるデブリの急速な増加を小惑星帯の形成になぞらえ、このままでは「デブリ帯」ができてしまうと警告した[11]。小惑星帯の形成は数千万年から数億年かかったとされているが、ケスラーシンドロームでは数十年から数百年で急速にデブリの数密度が上昇すると考えられている。
シミュレーション
結果

1980年代後半、国際宇宙ステーションの計画において、スペースデブリが大きな脅威になりうることが明らかになったため、この時期にデブリに関する研究は大きく前進した[6]。この結果、多くのデブリ環境の予測シミュレーションが行われ、多くの研究者が高度1,000km近傍ですでにケスラーシンドロームが始まりつつあるという結果を得た(年表参照)。高度 1,000 km で始まる理由は、観測に適した太陽同期軌道の高度に対応しており、もともと人工衛星の密度が高く、また軌道寿命も数百年と長いためである。
パラメータ依存性
初期デブリ分布
初期デブリ分布は、短期間のシミュレーションでは、プログラムの違いよりも影響が大きい重要なパラメータであり、常に改良が行われ続けている
[12]。たとえば、1998年のイタリア学術会議のモデルでは、過去に発生した 140 の爆散、16 の原子炉衛星からの冷却用金属液体の漏洩、ロケットの残骸と、宇宙における活動によって発生したデブリを含んでいる[13]。また、それぞれのデブリは発生した時期からシミュレーションが行い、最終的にカタログに登録されているデブリと統合して、6千5百万のデブリを生成している。初期デブリ分布が決まると、デブリの流量が決まり、デブリの衝突頻度が決定される。1999年の国連の報告書では、軌道物体同士の衝突頻度の計算例として以下のような数字を示している[9]。値の範囲はプログラムによる違いを示しており、小さなデブリほど不確実性が大きい。

10 m2 の断面積を持つ衛星の平均衝突期間軌道高度0.1 – 1.0 cm1.0 – 10 cm> 10 cm
500 km10 – 100 年3,500 – 7,000 年150,000 年
1,000 km3 – 30 年700 – 1,400 年20,000 年
1,500 km7 – 70 年1,000 – 2,000 年30,000 年

軌道寿命
軌道寿命とは、軌道物体が大気圏に落下突入して消滅するまでに要する時間である。軌道物体の高度が下がる主な要因は大気抵抗であるが、大気は太陽の活動によって約 11 年周期で膨張収縮するため、初期状態における太陽の状況によって軌道寿命は変動する[6]。10 cm 四方の 300 g のデブリを考えた場合、典型的な軌道寿命は高度 600 km では数年程度、高度 800 km で数十年程度、高度 1,000 km で数百年程度になる[14]。将来の大気密度を予測することは極めて困難であるが、デブリ環境のシミュレーションに及ぼす影響は小さい[15]
平均衝突強度
軌道物体同士が衝突した際、標的が粉砕される衝突を破局的衝突(catastrophic collision)と呼ぶ。破局的衝突でなくても、衛星を機能不全に至らせることは可能であるが、新たなデブリを大量に生成するのは破局的衝突の場合である。平均衝突強度とは破局的衝突に必要なエネルギーのことであり、NASA の一連の衝突実験により 1 g あたり 40 J という経験的な値を得ている。2000年、NASA のP.クリスコは平均衝突強度を 30 J/g から 60 J/g まで変化させて、将来のデブリの予測値がどの程度変化するか調べた[16]。その結果、10 cm 以上のデブリの数は計算誤差の範囲内でしか変化しなかった。
爆散頻度とロケット発射頻度
計算には不確実なパラメータを含むが、長期的なシミュレーションにおいて重要でありながら不確かなのが爆散頻度とロケットの発射頻度である。特に爆散に関しては、2004年までに 173 回以上の軌道物体の爆散があり、ロケットや衛星の残骸と並んで主要なデブリ生成源となっている[17]。意図的でない爆散は技術の進展によって減る可能性もあるが、原因のわかっている爆散のうち約 4 割が故意の爆破であるという事実が状況を複雑にする。通常は、軌道物体が爆散する確率も、ロケットの発射頻度も計算当時の状況が続くとするのが、もっともありうるシナリオとして提示される。1999年、イタリア学術会議のL.アンセルモと、A.ロッシ、C.パルディーニは、モデルがどれだけパラメータに左右されるか確かめるため、以下のような系の計算を行った[18]

これまで通りの爆発とロケット射出が行われる

二度と爆発が起きない

二度と爆発が起きず、ロケットの本体を軌道に残さず、人工衛星は寿命がきたら全部回収する
を含む 5 つのシナリオを計算した結果、たとえ二度と爆発を起こさなくても、加速度的なデブリの増加は避けられない。新しい軌道物体を全部回収するようにしたときのみ、10 cm 以上のデブリを減らすことができるとなった。この計算は、不確かなパラメータを妥当な範囲で可能な限り変化させても、既にケスラーシンドロームに突入しているという状況は変わらないということを示した。
軌道離脱
多くの計算では、今後二度と爆発を起こさないとしても、今世紀中にケスラーシンドロームに突入する。そこで、新しく打ち上げられる衛星の寿命がきたら軌道離脱をさせ墓場軌道へ送るなり地球に突入して燃え尽きさせるなりし、新たなデブリが発生しないようにした場合の計算が行われている。2000年、NASA のP.クリスコは今後のミッションにおいて、適当な期間、たとえば 25 年以上軌道物体を残さないようにすれば、デブリの増加を大きく抑えられるという計算結果を得た[16]


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:75 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef