クエーサー
[Wikipedia|▼Menu]
クエーサーのイメージ

クエーサー(: Quasar)は、非常に離れた距離に存在し極めて明るく輝いているために、光学望遠鏡では内部構造が見えず、恒星のような点光源に見える天体のこと。クエーサーという語は準恒星状(quasi-stellar)の短縮形である[1]

強い電波源であるQSS(準恒星状電波源) (: quasi-stellar radio source)と、比較的静かなQSO(準恒星状天体) (: quasi-stellar object)がある[1]。最初に発見されたのはQSSだが、QSOの方が多く発見されている[1]

日本語ではかつて準星などと呼ばれていた。
概要

現在では非常に遠方にある活動銀河核の一種とされる。構造上は、クエーサーと比べて比較的近傍に存在するセイファート銀河などと同じく、活動銀河核を持つ銀河の一種であると考えられている。

クエーサーのスペクトルは大きな赤方偏移を持つ。この大きな赤方偏移は、ドップラー効果により光源が地球から極めて高速で遠ざかっていることを意味するので、ハッブルの法則からクエーサーは極めて遠い場所に存在することがわかる。このような非常に遠方にあってもクエーサーは明るく見え、実際の明るさを考えると典型的な銀河の100倍程度のエネルギーを放出していると考えることができる。現在最も遠いクエーサーは、2017年12月6日に発見されたULAS J1342+0928で、赤方偏移は z = 7.54 に達している。「クエーサーの一覧」を参照

クエーサーの中には明るさが急激に変化しているものがある。これはクエーサーの本体が非常に小さいことを示唆している。

一番明るく見えるクエーサーでも、13等級の明るさしかない[2]

全てのクエーサーが強い電波を放射しているわけではないことが分かっている。発見されている大部分のクエーサーは、電波の弱いクエーサー(: radio-quiet quasar )であり、電波の強いクエーサー(: radio-loud quasar )は少数(実際には全体の約10%)である[3]。クエーサーは宇宙誕生後10億年も経たないうちにでき始め、宇宙が20億?30億歳の頃に最も多く形成された天体である[4]

OVV(光学的激変天体)(: optically violent variable)と定義されたものは、ブレーザーに分類される[1]
特徴

今まで観測されている数百個のクエーサーは全て大きな赤方偏移を持っており、その値は 0.16 から 7.5 付近にまでにわたっている。距離に直すと 600Mpc から 4000Mpc[5] という遠距離に存在していることになり、多くのクエーサーは 1000Mpc 以上の距離にある。観測されるクエーサーは非常に暗いが、これだけ大きな赤方偏移を生じるほど遠方にあることから、実際にはクエーサーは宇宙に存在する天体の中で最も明るいと考えられている。一般的にクエーサーの明るさは 1038 W(最も明るい電波銀河の光度)から 1042 W に達し、平均的には 1040 W の規模である。これは銀河系の明るさの1000倍、太陽の10兆倍である。また、光速度は有限であるから、これほどの遠距離にあるクエーサーを含む電磁波を観察することは、そのまま遠い過去の宇宙からの電磁波を観察していることになる。

非常に遠方にあっても観測できるほどの明るさをもつクエーサーは、その膨大なエネルギー源の推論から現在では活動銀河の一種と認識される場合が多い。すなわち、クエーサーの放射は相対論的ジェットやローブと呼ばれる構造を持つものもある。クエーサーは電波赤外線可視光紫外線X線γ線のあらゆる電磁波で観測される。

クエーサーはまた、時間とともに明るさが変化(変光)することが分かっている。周期は数日、数時間、中には数週間、数ヶ月、数年というスケールで変化するものもある。短い周期で変化することもあることから、クエーサーは非常に小さな領域からエネルギーを放出していると考えられる。大きな天体であれば、明るさの変化を起こす原因は光速を超えずに天体全体に伝わり、それには時間がかかることになるが、天体全体が短い周期で変光するということは、変光の原因がなんであれ変化が天体全体にわたるまでに時間を要していない、すなわち天体は小さいと解釈される。
放射の発生機構

クエーサーは活動銀河とほぼ同様の特徴を示すので、多くの研究者がクエーサーの放射を小さな活動銀河と比較してきた。クエーサーの正体として最も有力な説は、クエーサーは大質量ブラックホールをエネルギー源に持っている、というものである。クエーサーの強力な光度は、大質量ブラックホールを取り巻く降着円盤のガスや塵がブラックホールに落ち込む時の摩擦によって生み出されていると考えられている[6]。この物理過程では落ち込む質量の約50%をエネルギーに変換することが可能で、核融合によるエネルギー変換が質量の数%にとどまるのに比べて非常に変換効率が良い。1040 W というクエーサーの平均的な光度を生み出すには、大質量ブラックホールは1年あたり恒星を10個飲み込む計算になる。現在知られている最も明るいクエーサーの場合には、毎年1000太陽質量程度の物質を消費しているだろうと考えられている。

またクエーサーは、その周辺の環境によって「スイッチ」が入ったり切れたりすると考えられている。例えば、上に挙げたような割合で100億年も「餌」となる物質が供給され続けることはないと思われる。このメカニズムは、なぜクエーサーが初期の宇宙にのみ見られるのかという問題にもうまく説明を与える。つまり、降着円盤によるエネルギー生成は、大質量ブラックホールの周囲の物質が全て消費し尽くされると停止するのである。このことから、我々の銀河系を含むほとんどの銀河は過去にクエーサーの段階を経験し、現在は中心のブラックホールに質量が供給されていないためにエネルギー放射活動をしない平穏な状態にある、とも考えられる。活動銀河や大質量ブラックホールによるエネルギー放射活動は現在でも見られるが、クエーサーが活動していた時期に比べて非常に少なくなっている、と解釈されている。
観測の歴史

現在観測されているクエーサーのいくつかは、1950年代の終わりに電波源として記録されている。1960年頃までにこのような天体が数百個見つかり、ケンブリッジカタログ第3版(3C カタログ)に収録されたが、電波源は謎のままだった。

1960年、カタログ中の3C 48という電波源と位置関係が対応する天体の光学観測に成功した。この暗く青い星のように見える天体のスペクトルには、正体不明の幅の広い輝線が多く含まれていたが、当時はこの奇妙なスペクトルが何かを説明できなかった。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:37 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef