ガウスの法則_(磁場)
[Wikipedia|▼Menu]
.mw-parser-output .hatnote{margin:0.5em 0;padding:3px 2em;background-color:transparent;border-bottom:1px solid #a2a9b1;font-size:90%}

電場に対するガウスの法則については「ガウスの法則」をご覧ください。

物理学
ウィキポータル 物理学
執筆依頼加筆依頼
物理学
ウィキプロジェクト 物理学
カテゴリ 物理学

磁場のガウスの法則(じばのガウスのほうそく、英語: Gauss's law for magnetis)はマクスウェル方程式の一つに数えられる、磁場の構造に関する法則である。電場電荷に対する同様の法則もガウスの法則と呼ばれる(基本的にガウスの法則と言えば電場に対するものを意味する)。電磁気学の基礎法則の一つである。

この法則は磁場Bの発散は0となること、すなわち磁力線は必ず閉曲線となることを主張する。つまりこの世界に磁気単極子が存在せず、磁気双極子として存在していることを意味する。ただし電磁気学は磁気単極子が存在しないことを前提条件として構築された理論であるため、もし磁気単極子が発見された場合には厳密な研究の下にこの法則は修正される必要がある。

この法則は「磁束保存の法則」とも呼ばれる。
概要

一般に積分形式とよばれるガウスの法則は以下の形であらわされる。

∮ S B ⋅ d S = 0 {\displaystyle \oint _{S}{\boldsymbol {B}}\cdot \mathrm {d} {\boldsymbol {S}}=0}

ここで、B: 磁束密度
dS: 面素ベクトル
V: 体積

である。

この式の左辺は任意の領域の表面から出入りする磁束の総量であり、それが常に0であることを意味する。

磁束線には電気力線に対する電荷に相当する磁荷が存在しないので、磁束線の湧出し口と吸込み口は存在せず、磁束線は必ず閉曲線を描く。

この法則は微分形式では以下の形で表される。

∇ ⋅ B = 0 {\displaystyle \nabla \cdot {\boldsymbol {B}}=0}

あるいは、

div ⁡ B = 0 {\displaystyle \operatorname {div} {\boldsymbol {B}}=0}

この法則をして「磁場の発散は0である」という。この式から磁場に対するガウスの法則は領域をどんなに小さく設定しても成り立ち、また領域の内部に磁場の発生元が存在しなくても成り立つことがわかる。
参考文献.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

出典は列挙するだけでなく、脚注などを用いてどの記述の情報源であるかを明記してください。記事の信頼性向上にご協力をお願いいたします。(2018年11月)


伊藤敏夫『電磁気学』朝倉書店〈朝倉物理学選書3〉、2008年。 

関連項目

電場に対する
ガウスの法則

マクスウェルの方程式

発散 (ベクトル解析)

ビオ・サバールの法則










電磁気学
基本

電気

磁性

静電気学

電荷

クーロンの法則

電場

電束

ガウスの法則

電位

静電誘導

電気双極子

分極電荷

静磁気学

アンペールの法則

電流

磁場

磁化

磁束

ビオ・サバールの法則

磁気モーメント

ガウスの法則

電気力学

自由空間

ローレンツ力

起電力

電磁誘導

ファラデーの法則

レンツの法則

変位電流

マクスウェルの方程式

電磁場

電磁波

リエナール・ヴィーヘルト・ポテンシャル(英語版)

マクスウェル・テンソル

渦電流

電気回路

電気伝導

電圧

キルヒホッフの法則

電気抵抗

静電容量

インダクタンス

交流

インピーダンス

アドミタンス

共鳴空洞

導波管

共変定式

電磁場テンソル

4元電流密度

電磁ポテンシャル

電磁場の応力エネルギーテンソル(英語版)

人物

アンペール

クーロン

ファラデー

ガウス

オーム

ヘヴィサイド

ヘンリー

ヘルツ

キルヒホフ

ローレンツ


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:18 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef