オートフォーカス
[Wikipedia|▼Menu]
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

この記事は検証可能参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方
出典検索?: "オートフォーカス" ? ニュース ・ 書籍 ・ スカラー ・ CiNii ・ J-STAGE ・ NDL ・ dlib.jp ・ ジャパンサーチ ・ TWL(2023年3月)

オートフォーカス (Autofocus, AF) または自動焦点(じどうしょうてん)とは、カメラの焦点を、センサー制御系モーターなどを利用して自動的に合わせるシステムのこと。近年販売されているコンパクトカメラ一眼レフカメラのほとんどに装備されている。また、携帯電話スマートフォンのカメラにも搭載されている場合が多い。アクティブ方式とパッシブ方式に大別される。AFと略されることがある。

尚、初期には焦点連動装置レンジファインダーの事を自動焦点装置やオートホーカス、或いはドイツ語風にアウトホークスと表記した例がある。これは主に戦前の表記で、現在、焦点連動装置はむしろマニュアルフォーカスに分類されるためオートフォーカスに含むことはない。
方式コンパクトカメラのアクティブ式センサー(上)とパッシブ式センサー(下)

オートフォーカスの方式は、大きくアクティブ方式とパッシブ方式の2つに区分される。アクティブ方式、パッシブ方式を併用した製品もある。
アクティブ方式レーダーと同様の原理で、対象物(被写体)に赤外線超音波などを照射し、その反射波が戻るまでの時間や照射角度により距離を検出する方式。フィルム式コンパクトカメラにおいては標準的な方式である。この方式では、暗い場所でもピントを合わせることが可能な反面、対象物との間に透明な板(ガラスなど)がある場合に距離検出を間違うことがある。また風景写真のような遠距離のピントは、反射波がカメラまで届かなかったり、届いても微弱なためにピントを合わせにくい。
パッシブ方式アクティブ方式のように赤外線などを用いず、レンズを通過した光を利用して測距を行う方式。主に一眼レフカメラで使われる位相差検出方式や、コンパクトデジタルカメラで使われるコントラスト検出方式、フィルム式コンパクトカメラで用いられていたパッシブ外光方式などがある。これらの複数の方式を併用した製品もある(ハイブリッド方式)。アクティブ方式が苦手とする遠距離へのピントも合わせられるが、暗い場所や、コントラストが低いものにピントを合わせるのを苦手とする。暗い場所でのピント合わせを補助するために、照明(補助光)を内蔵しているカメラが多い。
位相差AF位相差AFの原理

各図(縮尺比は同じでない)において、紫色の円は焦点を合わせる物体を表し、赤色の線および緑色の線はレンズ開口部を通過する光線を表し、黄色の長方形はAFセンサー(開口ごとに1つ)、グラフは各センサーによって検出される明暗度プロファイルを表す。

図1から図4は、それぞれレンズが(1)近すぎる(後ピン)、(2)正しい(ジャスピン)、(3)遠すぎる(前ピン)、(4)さらに遠すぎる状態を示す。 2つの輪郭の間の位相差は、最適な焦点を得るためにレンズをどの方向に動かすかを決定するために使用することができる。位相差AF方式は、入射光を2つの画像に分割し、結像した2つの画像の間隔からピントの方向と量を判断する方式である。 入射光の分割にセパレータレンズを必要とし、また専用の位相差AFセンサーを必要とするため、位相差AF方式は一眼レフカメラに搭載される(像面位相差AF(後述)を除く)。AFセンサーはカメラの底部に搭載され、システムはカメラの底部のAFセンサーに光を向けるために、ビームスプリッター(主反射ミラーの一部を半透過領域とし、入射光をAFセンサーに送る小さな副鏡と組み合わせて構成される)を使用する。 2つのマイクロレンズはレンズの反対側から来る光線を捕捉し、それをAFセンサーに向けて、レンズの直径内に基線を持つ簡単なレンジファインダーを作り出す。 次に、2つの画像を同様の光強度パターン(山と谷)について分析し、誤差を計算して被写体が前ピンか後ピンにあるかどうかを調べる。 これによりフォーカスリングの移動量と移動方向を判断する。コントラストAFと比べて、以下のような利点と欠点がある。

利点:

高速なAF動作が可能であり、動きのある被写体を撮る際に有効である


欠点: 

一眼レフカメラにしか搭載できない

ミラーで光を分岐させる必要があるため、反射ミラーを上げる必要がある動画撮影やライブビュー撮影では使用できない

測距点を多くすることが難しく、AF可能な位置は主に中心部に限られる

実際の画像を使用せずにAFを行うため、AF精度は劣る

原理的にセンサーに入る光の量が少なく、低照度でのAF動作を苦手とする

上記の通り欠点は多いが、動きのある被写体はコントラストAFが苦手とするシーンであるため、高速なAFが可能という利点は極めて大きく、スポーツ撮影や動物撮影などを行う場合は必須と言える。AFセンサーは一般的に1次元の感光性ストリップ(高さが数ピクセル、幅が数十ピクセル)であるが、近年のカメラ(キヤノン EOS-1Vキヤノン EOS-1Dニコン D2Xなど )では矩形のTTL-AREA-SIRとなっており、より精細な解析のために2次元の明暗度パターンを提供する。 クロス測距点は、互いに90°の方向を向いた一対のセンサーを有するが、一方のセンサーは通常他方のセンサーよりも大きな開口を必要とする。いくつかのカメラ(ミノルタ7、キヤノンEOS-1V、1D、30D / 40D、ソニーα700、α850、α900など)には、プリズムとセンサーを追加した「高精度」焦点がいくつかある。特定の開口(通常はF値2.8以上)を持つ「高速レンズ」でのみ有効である。 高い精度は、「レンジファインダー」の有効な基線長の幅広さからもたらされる。位相差AFシステムの構成:7 - 焦点検出のための光学システム; 8 - イメージセンサ; 30 - 撮影光学系の射出瞳近傍の面 31,32 - 一対の領域 70 - ウィンドウ; 71 - 視野マスク; 72 - コンデンサーレンズ 73,74-一対の開口 75 - 開口マスク 76,77 - 再収斂レンズの対 80,81 - 一対の受光部
像面位相差AF像面位相差AF方式は、位相差AFと同じく2つの画像の位相差を検出して合焦するが、位相差AFと異なり専用のAF機構を持たず、撮像素子にAFセンサーを組込んでいる方式である。通常、撮像素子の前にはマイクロレンズが組み込まれているが、さらにAFセンサーとなる画素の直前にスリットを配置し、AFセンサーへの入射光を制限することによって位相差を検出する仕組みである。なお、カメラによってはスリットを搭載せず、全画素を2分割して撮像素子と兼用とする方式もある(キヤノンの「デュアルピクセルCMOS AF」など)。像面位相差AFは、富士フイルム FinePix F300EXR、FinePix Z800EXRで世界で初めて実用化された。像面位相差AFは、コントラストAF、位相差AFと比べて以下のような利点と欠点がある。

利点:

専用のAF機構を必要としないためコンパクトデジタルカメラやミラーレス一眼カメラスマートフォンにも搭載可能である

コントラストAFと比べて高速なAF動作を行える

位相差AFでは使用できない動画撮影やライブビュー撮影でも使用可能

位相差AFと比べてAF精度は高い


欠点:

位相差AFと比べるとAF動作はやや劣る

AFセンサーの数と画素数がトレードオフの関係にあり、画質を優先するとAF性能が落ち、AF性能を優先すると画質が落ちることになる

全画素を2分割する方式の場合、信号処理の負荷が高く消費電力量が多くなり、省電力性能に影響を与える

位相差AFと同じく低照度でのAF動作を不得意とする


コントラストAFコントラストAF方式は、レンズを通して、センサーフィールド内のコントラストを測定することによって合焦する方式である。センサーの隣接画素間のコントラストは、画像の焦点が正しくなるに伴って自然に増加する。 これにより、最大コントラストが検出されるまでピントレンズを動かすことで合焦する。 この方法では、AFは実際の距離測定を全く行わない。 これは、コントラストの喪失が、被写体がカメラの方へ近寄ったことによるのか、またはカメラから遠ざったことによるのかが判別できないため、動く被写体を追跡する際に重大な問題を生じる。位相差AFのように専用のセンサーを使用せず、実際に撮像素子に映った画像そのものを利用してAFを行うので、コントラストAFは位相差AFよりAF精度が高い。しかし、コントラストAFでは何度もレンズを動かしてコントラストが最も高い位置を探すため、原理的に位相差AFより合焦が遅くなる。コントラストAFはメカニカルシャッターや反射ミラーがないデジタルカメラでは一般的な方法である。ほとんどの一眼レフでは、ライブビューモードでピントを合わせるときに、この方法(またはコントラストと位相差AFの両方のハイブリッド)を使用する。 ミラーレス一眼レンズカメラは、通常コントラストAFを使用しているが、一部のモデルでは像面位相差AFを併用しているため、AF追尾性能が大幅に向上する。コントラストAFは、位相差AFと比較して、レンズ設計に異なる制約を課す。 位相差AFではレンズを素早く合焦位置に移動させる必要があるが、コントラストAFでは焦点領域をすばやく移動し、最大コントラストが検出された時点で正確に停止するレンズが使用される。これは、位相差AF用に設計されたレンズは、コントラストAFを使用するカメラ本体ではしばしば機能しないことを意味する。コントラストAFは、位相差AF、像面位相差AFと比べて以下のような利点と欠点を持つ。

利点:

専用のAF機構を必要としないためコンパクトデジタルカメラやミラーレス一眼カメラ、スマートフォンにも搭載可能である

位相差AFでは使用できない動画撮影やライブビュー撮影でも使用可能

実際の画像を使用するため、位相差AF、像面位相差AFと比べてAF精度が高い

低照度でのAF動作も可能


欠点:

レンズを何度も動かして合焦するため、AF速度が遅い


一眼レフカメラにおけるオートフォーカスモード


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:21 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef