エジプト式分数
[Wikipedia|▼Menu]
リンド数学パピルス

エジプト式分数(エジプトしきぶんすう、単にエジプト分数とも、: Egyptian fraction)とは、いくつかの異なる単位分数(分子が 1 の分数)の和、あるいは分数をそのように表す方式を意味する。例えば、通常 .mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num,.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0 0.1em}.mw-parser-output .sfrac .den{border-top:1px solid}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}5/6 で表す分数を 1/2 + 1/3 などと表す。任意の有理数はこの形式で表すことができるが、表し方は一意ではない。この形式で分数を扱う方法は、古くは古代エジプトリンド・パピルスに見られ、ヨーロッパでは中世まで広く用いられた。現代でも数論の分野において、エジプト式分数に端を発する数学上の未解決問題が多く残されている。
単位分数展開

以下、特に断らない限り、単に「分数」といった場合、正の真分数、すなわち 0 より大きく 1 より小さな分数のみを考えているものとする。

例えば 2/5 は単位分数の和として 1/5 + 1/5 と表せるが、エジプト式分数では同じ単位分数を繰り返し用いることはせず、2/5 = 1/3 + 1/15 のように表す。いかなる分数に対してもこのような単位分数展開が必ず存在することは自明ではないが、後述するように今日ではあらゆる分数が無数に多くの単位分数展開を持つことが証明されている(#強欲算法の節参照)。さらに例を挙げると、3/7 = 1/4 + 1/7 + 1/28 = 1/6 + 1/7 + 1/14 + 1/21 であって、前者の展開は項数が最小であり、後者の展開は最大分母の値が最小である[1]。このように、どのような単位分数展開が最も「単純」であるか、は明らかではない。
古代エジプトホルスの目

エジプト中王国では、ホルスの目を用いたそれ以前の不完全な分数体系(1/2k (k = 1, 2, …, 6) の和で表す)に替わって、エジプト式分数による方法が発達した。エジプト式分数が見られる古い文献としては、エジプト数学革巻きモスクワ・パピルス、レイズナー・パピルス(英語版)、カフン・パピルス(英語版)、アクミム木刻版(英語版)がある。特に有名なリンド・パピルスは、紀元前1650年頃に書かれたものであり、5 以上 101 以下の奇数 n に対して 2/n を単位分数の和で表している(#リンド・パピルスの展開一覧の節参照)。

古代エジプト人が、いちいちこのように単位分数の和で表した理由については、よく分かっていない。ただ、リンド・パピルスにはパンを分け合う問題がいくつもあって、実際にパンを分け合うにはエジプト式の表示が理に適っている場合がある。例えば、リンド・パピルスの問題3は、6斤のパンを10人で分け合うとき、1人分は 1/2 + 1/10 であることを答とする。6斤のパンをそれぞれ5等分するよりも、5斤を1斤づつ2等分して1片ずつ取り、残りの1斤を10等分する方が簡単である[2]。一方では、合理的とは思えない表示を選ぶ場合もある。リンド・パピルスの問題4は、7斤のパンを10人で分け合う問題であるが、1/2 + 1/5 ではなく、2/3 + 1/30 を答としている[3]。2/3 は単位分数ではないから、この表示は狭い意味でエジプト式ではないが、古代エジプト人にとって 2/3 は特別な数であったらしい。2/3 = 1/2 + 1/6 であることを知っていたにもかかわらず、好んでこの数を用いている。

リンド・パピルスにおける 2/n の表を参照すれば、分母が 100 以下の奇数である多くの分数が、機械的に単位分数の和で表せる。例えば、表より 2/21 = 1/14 + 1/42 であるから、5/21 = 1/21 + (1/14 + 1/42) + (1/14 + 1/42) = 1/21 + 1/7 + 1/21 = 1/7 + 1/14 + 1/42

と計算できる[4]。リンド・パピルスにおいて、2/n に特に注意が払われているのは、古代エジプトの乗法(英語版)アルゴリズムが2倍を基礎においているためであろう、とも考えられている[5]
表記

古代エジプト人たちは、2/3 を唯一の例外として、単位分数のみを表記した。単位分数 1/n を表すために、神官文字では点を、神聖文字では



を n を表す記号の上に置いた。例えば




= 1 3 {\displaystyle ={\frac {1}{3}}}




= 1 10 {\displaystyle ={\frac {1}{10}}}

といった具合である。1/2 と 2/3 のみ、特別なグリフ



= 1 2 {\displaystyle ={\frac {1}{2}}}



= 2 3 {\displaystyle ={\frac {2}{3}}}

を持つ。2/3 のグリフは、正確には右の縦線が若干長い。長い方が 1 を、短い方が 1/2 を表し、全体としてはその和 3/2 の逆数を意味している[2]
計算方法

現代の数学史家は、リンド・パピルスなどの古文書を調べ、古代エジプト人のエジプト式分数による計算方法がどのようなものであったかを研究した。特に、リンド・パピルスに書かれた 2/n の表現がどのように得られたのかに注目し、様々な説を立てている。古代エジプト人が、分数を単位分数の和に表す系統的な方法を知っていたかどうかは不明であるが、少なくとも単一の方法のみを用いたのではなさそうである。恒等式 2/2m + 1 = 1/m + 1 + 1/(m + 1)(2m + 1) を用いれば、単一の方法で2つの単位分数の和に表せるにもかかわらず、分母が大きくなるのを嫌ってか、リンド・パピルスでは3項あるいは4項の和に表しているものもある。数学史家たちの分析によれば、分母が素数の場合と合成数の場合で、リンド・パピルスの著者は異なる方法を用いており、それぞれの場合においても複数の方法を用いている。
分母が奇素数の場合(1)

小さな奇素数 p = 2m + 1 (3, 5, 7, 11, 23) に対しては、恒等式 2/2m + 1 = 1/m + 1 + 1/(m + 1)(2m + 1) が用いられている。この方法は奇素数に限らず、任意の奇数に対して使用できる。
分母が奇素数の場合(2)

大きめの奇素数 p (13, 17, 19, 29, …) に対しては、恒等式 2/p = 1/A + 2A − p/Ap が用いられている。ここで、A は p/2 < A < p を満たし、約数を多く持つ数が選ばれる。2A − p/Ap について、分子が A のいくつかの約数の和に表すことができれば、約分して単位分数の和を得る。例えば、p = 37 に対して A = 24 とすると、2A − p = 11 = 3 + 8 で 3 と 8 は 24 の約数であるから、リンド・パピルスの展開 2/37 = 1/24 + 1/111 + 1/296 を得る。A を取り替えたり、約数の和に分解する方法を変えたりすると別の展開を得る。
分母が半素数の場合(1)

分母が2つの奇素数の積として pq であるとき、a = p + 1/2 として恒等式 2/pq = 1/aq + 1/apq を用いることができる。例えば、p = 3, q = 7 のとき、a = 2 より 2/21 = 1/14 + 1/42 を得る。この方法で、リンド・パピルスの単位分数展開のうち、分母が半素数であるものの多くは説明が付く。
分母が半素数の場合(2)

分母が半素数の場合、r = p + q/2 として恒等式 2/pq = 1/pr + 1/qr を用いることもできる[6]。例えば、p = 5, q = 7 とすると、リンド・パピルスの表示 2/35 = 1/30 + 1/42 を得る。2/91 についても同様である。
分母がその他の合成数の場合

その他の合成数 n については、n の約数 m に対する 1/m の単位分数展開から得られる。例えば、2/19 = 1/12 + 1/76 + 1/114 を 5 で割ることにより、2/95 = 1/60 + 1/380 + 1/570 を得る。実際は、1/380 + 1/570 = 1/228 であるから、より簡単な展開を得るが、リンド・パピルスでは簡約化されていないものが記されている。3つ以上の素数の積、27, 45, 63, 75, 81, 99 に対してもこの方法で説明が付く。
分母が101の場合

リンド・パピルスの最後の単位分数展開 2/101 = 1/101 + 1/202 + 1/303 + 1/606 は、以上のどれにも当てはまらないが、恒等式 2/p = 1/p + 1/2p + 1/3p + 1/6p に p = 101 を代入して得られる。これと同等の等式は『エジプト数学羊皮紙巻子本』でも用いられている。
リンド・パピルスの展開一覧

リンド・パピルスの最初に記された単位分数展開の一覧[7]を下記の表に記す。2/3 は別格として特別の注意が払われている。単位分数展開は一意ではないが、リンド・パピルスでは、1つの分数に対して1つの展開だけが記されており、それは必ずしも最も単純な展開ではない。例えば、2/13 = 1/7 + 1/91 であるが、なぜかこれよりも項数が多く、分母も大きなものが記されている。

背景が水色のセルはリンド・パピルスに記されている展開方法を示す。

リンド・パピルスに記された 2/n の単位分数展開一覧分母種類奇数奇素数半素数半素数合成数
3素数(2/3 = 1/2 + 1/6)
5素数2/5 = 1/3 + 1/15
7素数2/7 = 1/4 + 1/28
9半素数2/9 = 1/5 + 1/452/9 = 1/6 + 1/18
(a=2, p=3, q=3)2/9 = 1/6 + 1/18
(2/3 = 1/2 + 1/6
を 3 で割る。)
11素数2/11 = 1/6 + 1/66
13素数2/13 = 1/7 + 1/912/13 = 1/8 + 1/52 + 1/104
(A=8, p=13, 2A-p=3=2+1)
15半素数2/15 = 1/8 + 1/1202/15 = 1/10 + 1/30
(a=2, p=3, q=5)2/15 = 1/12 + 1/20
(r=4, p=3, q=5)2/15 = 1/10 + 1/30
(2/3 = 1/2 + 1/6
を 5 で割る。)
17素数2/17 = 1/9 + 1/1532/17 = 1/12 + 1/51 + 1/68
(A=12, p=17, 2A-p=7=4+3)
19素数2/19 = 1/10 + 1/1902/19 = 1/12 + 1/76 + 1/114
(A=12, p=19, 2A-p=5=3+2)
21半素数2/21 = 1/11 + 1/2312/21 = 1/14 + 1/42
(a=2, p=3, q=7)2/21 = 1/15 + 1/35
(r=5, p=3, q=7)2/21 = 1/14 + 1/42
(2/3 = 1/2 + 1/6
を 7 で割る。)
23素数2/23 = 1/12 + 1/276
25半素数2/25 = 1/13 + 1/3252/25 = 1/15 + 1/75
(a=3, p=5, q=5)2/25 = 1/15 + 1/75
(2/5 = 1/3 + 1/15


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:79 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef