イデアル_(環論)
[Wikipedia|▼Menu]
.mw-parser-output .hatnote{margin:0.5em 0;padding:3px 2em;background-color:transparent;border-bottom:1px solid #a2a9b1;font-size:90%}

「イデアル」はこの項目へ転送されています。その他の用法については「イデアル (曖昧さ回避)」をご覧ください。

抽象代数学の分野である環論におけるイデアル(: ideal, : Ideal)はの特別な部分集合である。整数全体の成す環における、偶数全体の成す集合や 3 の倍数全体の成す集合などの持つ性質を一般化したもので、その部分集合に属する任意の元の和と差に関して閉じていて、なおかつ環の任意の元を掛けることについても閉じているでない部分集合をイデアルという。

整数の場合であれば、イデアルと非負整数とは一対一に対応する。即ち整数環 Z の任意のイデアルは、それぞれただ一つの整数の倍数すべてからなる主イデアルになる。しかしそれ以外の一般の環においてはイデアルと環の元とは全く異なるものを指しうるもので、整数のある種の性質を一般の環に対して一般化する際に、環の元を考えるよりもそのイデアルを考えるほうが自然であるということがある。例えば、環の素イデアル素数の環における対応物であり、中国の剰余定理もイデアルに対するものに一般化することができる。素因数分解の一意性デデキント環のイデアルに対応するものが存在し、数論において重要な役割を持つ。

イデアルは整数の算術から定義される合同算術の方法と同様の剰余環(商環)の構成にも用いられる、この点において群論剰余群(商群)の構成に用いられる正規部分群と同様のものと理解することができる。

順序集合に対する順序イデアル(英語版)の概念は環論におけるこのイデアルの概念に由来する。またイデアルの概念を一般化して分数イデアルの概念を考えることもでき、それとの区別のためここで扱う通常のイデアルは整イデアルと呼ばれることもある。
定義

R の部分集合 I が、加法群としての部分であり、R のどのを左からかけても、また I に含まれるとき、I を左イデアル (left ideal) という。同様に任意の R の元を右からかけたものが I に含まれるとき、I を右イデアル (right ideal) という。言い換えると、R の部分集合 I が左(右)イデアルであるとは、I が R の左(右)加群としての部分加群であることをいう。左イデアルかつ右イデアルであるものを、両側イデアル (two–sided ideal) または単にイデアルという。R が可換環である場合はこれらの概念は全て一致するため、単にイデアルと呼ばれる。以下に述べるように、群を正規部分群で類別することによって剰余群を得るのと同様に、環を両側イデアルで類別することによって剰余環を得る。

I を環 R の両側イデアルとする。 a ∼ b ⟺ a − b ∈ I {\displaystyle a\sim b\iff a-b\in I}

によって二項関係 ~ を定義すると、これは同値関係になる。この同値関係による商集合には自然に演算が定義できて、環になることが分かる。新しく作られたこの環を R のイデアル I による剰余環と呼び、R/I と書く。商環と呼ばれる場合もある。

環の準同型はイデアルであり、逆にイデアルはある環準同型の核になる。群の場合と同じように、環についても準同型定理が成り立つ。すなわち、f : R 1 → R 2 が準同型ならば、R 1 の核による剰余環 R 1/Ker f は準同型の像 Im f と同型である。
イデアルと合同関係

環構造と両立する同値関係である合同関係とイデアルとの間には一対一対応が存在する。即ち、環 R のイデアル I が与えられたとき、x ~ y ⇔ x ? y ∈ I で定義される関係 ~ は R 上の合同関係であり、逆に R 上の合同関係 ~ が与えられたとき I = {x : x ~ 0} は R 上のイデアルになる。
イデアルの生成

R を(必ずしも単位的でない)環とする。R のでない左イデアルの族の交わりはまた左イデアルになる。R の任意の部分集合 X に対し、R の X を含む任意のイデアル全ての交わり I はやはり X を含む左イデアルであって、また明らかにそのようなイデアルの中で最小である。このイデアル I を X によって生成された左イデアルと呼ぶ。左イデアルの代わりに右イデアルもしくは両側イデアルをそれぞれ考えることにより、それぞれ同様の概念が定義される。

R が単位的ならば、R の部分集合 X が生成する左、右、両側イデアルは内部的な演算によって記述することができる。即ち、X の生成する左イデアルは { r 1 x 1 + ⋯ + r n x n ∣ n ∈ N , r i ∈ R , x i ∈ X } {\displaystyle \{r_{1}x_{1}+\dots +r_{n}x_{n}\mid n\in \mathbb {N} ,r_{i}\in R,x_{i}\in X\}}

によって与えられる。実際これが左イデアルを成し、これらの元が X を含む任意のイデアルに属することは明らかであるから、確かにこれは X の生成する左イデアルである。同様に X の生成する右、両側イデアルはそれぞれ { x 1 r 1 + ⋯ + x n r n ∣ n ∈ N , r i ∈ R , x i ∈ X } , {\displaystyle \{x_{1}r_{1}+\dots +x_{n}r_{n}\mid n\in \mathbb {N} ,r_{i}\in R,x_{i}\in X\},} { r 1 x 1 s 1 + ⋯ + r n x n s n ∣ n ∈ N , r i ∈ R , s i ∈ R , x i ∈ X } {\displaystyle \{r_{1}x_{1}s_{1}+\dots +r_{n}x_{n}s_{n}\mid n\in \mathbb {N} ,r_{i}\in R,s_{i}\in R,x_{i}\in X\}}

によって与えられる。

規約として、0 は0 項からなる和と見做すことにより、イデアル {0} は空集合 ∅ の生成する R のイデアルと考える。

R の左イデアル I が R の有限集合 F によって生成されるならば、イデアル I は有限生成であるという。有限集合で生成される右イデアル、両側イデアルについても同様である。

生成系 X が R の適当な元 a のみからなる単元集合 {a} とすると、X = {a} の生成する各イデアルは簡単に R a = { r a ∣ r ∈ R } , {\displaystyle Ra=\{ra\mid r\in R\},} a R = { a r ∣ r ∈ R } , {\displaystyle aR=\{ar\mid r\in R\},} R a R = { r 1 a s 1 + ⋯ + r n a s n ∣ n ∈ N , r i ∈ R , s i ∈ R } {\displaystyle RaR=\{r_{1}as_{1}+\dots +r_{n}as_{n}\mid n\in \mathbb {N} ,r_{i}\in R,s_{i}\in R\}}

と言う形に書くことができる。これらは a によって生成される左、右、両側の主イデアル(単項イデアル)と呼ばれる。a の生成する両側イデアルを簡単に (a ) と書くことも広く行われている。

上で述べたことは、単位的でない環 R に対しては少しく変更が必要である。X の元の有限積和に加えて、任意の自然数 n と X の元 x に対して、x の n-重和 x + x + … + x および (−x) + (−x) + … + (−x) を考えるのである。単位的環 R に対してはこの余分な仮定は過剰な条件になる。

整数環 Z はその任意のイデアルがただ一つの数で生成され(したがって Z は主イデアル整域)、主イデアル nZ の生成元は n または −n のちょうど二つである(その意味ではイデアルと整数との差異はこの環ではほぼ分からない)。任意の整域において aR = bR は、適当な単元 u が存在して au = b を満たすことを意味し、逆に任意の単元 u に対して aR = auu?1R = auR が満たされる。故に可換主イデアル整域において、主イデアル aR を任意の単元 u に対する au が生成することができる。Z の単元は 1 と −1 の二つのみであるから、これは Z の場合をも含んでいる。

イデアルの演算

I, J を R の左(右)イデアルとする。I, J の和を I + J := { a + b ∣ a ∈ I , b ∈ J } {\displaystyle I+J:=\{a+b\mid a\in I,\,b\in J\}}

で定義すると、これは I, J を含む左(右)イデアルのうち最小のものである。また、I と J の積集合 I ∩ J は I, J に含まれる左(右)イデアルのうち、最大のものである。しかし、和集合 I ∪ J は必ずしもイデアルにならない。I と J が共に両側イデアルのとき、それらの積を I J := { a 1 b 1 + ⋯ + a n b n ∣ n ∈ N , a i ∈ I , b i ∈ J } {\displaystyle IJ:=\{a_{1}b_{1}+\cdots +a_{n}b_{n}\mid n\in \mathbb {N} ,\,a_{i}\in I,\,b_{i}\in J\}}

で定義すると、これはまた両側イデアルであり、I ∩ J に含まれる。積の定義は、単なる I の元と J の元の積ではなく、その有限和全体の集合であることに注意する必要がある。これらの間の包含関係をまとめると次のようになる。 I J ⊂ I ∩ J ⊂ I , J ⊂ I ∪ J ⊂ I + J {\displaystyle IJ\subset I\cap J\subset I,\,J\subset I\cup J\subset I+J}


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:36 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef