アフィン空間
[Wikipedia|▼Menu]
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

出典は列挙するだけでなく、脚注などを用いてどの記述の情報源であるかを明記してください。記事の信頼性向上にご協力をお願いいたします。(2018年6月)

数学において、アフィン空間(あふぃんくうかん、英語: affine space, アファイン空間とも)または擬似空間(ぎじくうかん)とは、幾何ベクトルの存在の場であり、ユークリッド空間から絶対的な原点座標と標準的な長さや角度などといった計量の概念を取り除いたアフィン構造を抽象化した幾何学的構造である。(代数的な)ベクトル空間からどの点が原点であるかを忘れたものと考えることもできる。

1次元のアフィン空間はアフィン直線、2次元のアフィン空間はアフィン平面(英語版)と呼ばれる。
大まかな説明

アフィン空間では点の差としてベクトルを得たり、点にベクトルを加えて他の点を得たりすることはできるが、点同士をくわえることはできない。また特に、どの点が原点を与えるのかを認識することができない。

以下の特徴づけは形式的な定義よりは判りやすいだろう。アフィン空間はベクトル空間からどの点が原点であるかを忘れた後に残るもののことである(数学者Marcel Berger(英語版)の言によれば "An affine space is a vector space that's forgotten its origin" 「アフィン空間とは原点を忘れてしまったベクトル空間のことである」[1])。太郎さんは本当の原点 O が何処なのか知っていて、権兵衛さんは別の P と呼ばれる点が原点だと思っているという状況を想像してみよう。ふたつのベクトル a = O A → , b = O B → {\displaystyle \mathbf {a} ={\overrightarrow {\mathrm {OA} }},\,\mathbf {b} ={\overrightarrow {\mathrm {OB} }}}

を加えるというとき、権兵衛さんは自分の思う a + b を求めるために、P から A へ矢印を引き、P から B へ別の矢印を引いてできる平行四辺形の対角線を考えることになるわけだが、太郎さんはそれが実際には P + P A → + P B → {\displaystyle \mathrm {P} +{\overrightarrow {\mathrm {PA} }}+{\overrightarrow {\mathrm {PB} }}}

であることを知っている。同様に、a と b(あるいはもっと多くの有限個のベクトルの集合)の任意の線型結合について評価を行ったとき、太郎さんと権兵衛さんは一般には異なる答えを導き出すことになるが、それでもその線型結合の係数の和が 1 であるような場合には、太郎さんと権兵衛さんの答えは一致する

ということについてはよく注意しなければならない。この話の「落ち」は、権兵衛さんは「アフィン構造」(つまり係数の和が 1 の線型結合として定義されるアフィン結合の値)しか知らないが、太郎さんは「線型構造」と「アフィン構造」の両方を知っているということにある。台集合にアフィン構造を考えたものがアフィン空間なのである。
形式的な定義

集合 A と K 上の n-次元ベクトル空間 V の組 (A, V) が K 上の n-次元アフィン空間であるとは、次の 3 条件が成り立つときにいう。
任意の P ∈ A, a ∈ V に対し、 P Q → = a {\displaystyle {\overrightarrow {\mathrm {PQ} }}=\mathbf {a} } を満たす Q ∈ A はただ一つ存在する。これを Q = Ta(P) あるいは Q = P + a と記し、a が定める写像 Ta : A → A を a の定める平行移動という。

任意の a, b ∈ V に対し、 T b ∘ T a = T a + b {\displaystyle T_{\mathbf {b} }\circ T_{\mathbf {a} }=T_{\mathbf {a} +\mathbf {b} }} が成り立つ。すなわち、任意の点 P ∈ A に対し、(P + a) + b = P + (a + b) が成り立つ。

A の任意の二点 P, Q の組 (P, Q) に対し、Q = P + a を満たす a ∈ V がただ一つ定まる。これを a = P Q → {\displaystyle \mathbf {a} ={\overrightarrow {\mathrm {PQ} }}} と表す。これを(Q = P + a が成り立つことを示唆して)a = Q − P と表すこともある。

このとき、A をアフィン空間 (A, V) の台集合とよび、V を付随するベクトル空間、随伴ベクトル空間、同伴なベクトル空間などとよび、V = V(A) あるいは V = Vect(A) などと表す。また、V の元を A のあるいは A 上の幾何ベクトルとも呼ぶ。

紛れのおそれが無いならば、アフィン空間 (A, V) を単に台集合 A のみで表し、アフィン空間 A などと呼ぶことがある。

定義から、平行移動作用 T: A × V → A; (P, a) → P + a により、V は A に推移的に作用すること、各 a に対し作用素 Ta は V から A への全単射を与えることなどがわかる。
座標系詳細は「斜交座標」を参照

体 K 上の n 次元アフィン空間 A に対し、A の一点 O と V = V(A) の一つの順序付けられた基底 B = (a1, a2, ..., an) を固定して特別視するとき、組 (O; B) を O を原点とするアフィン空間 A の座標系あるいは斜交座標系 という。

このとき、任意の点 P ∈ A に対し、 p = O P → {\displaystyle \mathbf {p} ={\overrightarrow {\mathrm {OP} }}}

を満たすベクトル p ∈ V がただ一つ定まる。この p を P の位置ベクトルといい、p の基底 B に関する成分表示を P の座標系 (O; B) に関する座標という。すなわち、P の位置ベクトルが p = p1a1 + p2a2 + … pnan と表されるならば、P の座標は (p1, p2, ..., pn) ∈ Kn である。

座標系 (O; B) を固定したとき、A の点とその位置ベクトルとの対応 A = O + V ↔ V ;   P = O + p ↔ O P → = p {\displaystyle A=\mathrm {O} +V\leftrightarrow V;\ \mathrm {P} =\mathrm {O} {}+{}\mathbf {p} \leftrightarrow {\overrightarrow {\mathrm {OP} }}=\mathbf {p} }


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:30 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef