Γ線
[Wikipedia|▼Menu]
ガンマ線

原子核物理学



放射性崩壊
核分裂反応
原子核融合

放射性崩壊
アルファ崩壊ベータ崩壊 ・ ガンマ崩壊

その他の崩壊
二重ベータ崩壊二重電子捕獲内部転換核異性体転移クラスタ崩壊自発核分裂

放出過程
中性子放出陽電子放出陽子放出

捕獲
電子捕獲陽子捕獲中性子捕獲
RSPRp

高エネルギー反応
核破砕反応宇宙線による核破砕光分解

元素合成
恒星内元素合成
ビッグバン原子核合成
宇宙の元素合成

科学者
ベクレルベーテキュリーフェルミラザフォードバーバー

・話・編・歴

ガンマ線(ガンマせん、γ線、: gamma ray)は、放射線の一種。その実体は、波長がおよそ 10 pm よりも短い電磁波である。
概要

波長領域(エネルギー領域)の一部がX線と重なっていて、波長による境界線はない。10 nmから 1または10 pmまでをX線、これより短い波長(高いエネルギー領域)をガンマ線とすることもあるが、明確な基準は無い。両者の区別は波長範囲ではなく発生機構によっていて、ガンマ線は原子核エネルギー準位が遷移(不安定状態から、エネルギーを放出して安定)する現象を起源とし、X線は軌道電子遷移特性X線)や、自由電子運動エネルギー(制動X線)を起源とし、スペクトルにおいても制動X線の有無で見分けられる。

1.022 MeV以上のエネルギーを持つガンマ線が消滅するとき、電子陽電子対生成されることがある。逆に、電子陽電子対消滅する際には、0.511 MeVのガンマ線2本が反対方向に放出される。ガンマ線は電磁波の中で最もエネルギーが大きい領域に相当する。原理上人工的には造れないが、加速器で高エネルギー電子線から二次的に生成した高エネルギーのX線がガンマ線として扱われる。これまでに得られた電子線は200 GeVに達し、計画されている国際リニアコライダーではTeVに及ぶが、ガンマ線天文学の発展により、宇宙にはこれらを遙かに上回るものが存在すると考えられるようになった[1]
発見

最初に発見されたガンマ線源は「ガンマ崩壊」と呼ばれる放射性崩壊過程であった。この種の崩壊では、励起した核種が生成されると、ほとんど瞬間的にガンマ線を放出する[注釈 1]フランスの化学者かつ物理学者であるポール・ヴィラールは1900年にウランから放出される放射線を研究しているときにガンマ線を発見した。ヴィラールは彼が見出した放射線が、それまでにラジウムから放出される放射線として記述されていたもの (これにはアンリ・ベクレルによって1896年に初めて「放射能」として言及されたベータ線やラザフォードによって1899年に発見されたほとんど透過しない種類の放射線であるアルファ線が含まれる)より強力であることに気づいた。しかしながら、ヴィラールはこれを根本的に異なる種類として名前を付けようとは考えなかった[2][3]。その後1903年に、アーネスト・ラザフォードがヴィラールの放射線はそれまでに名付けられていた放射線とは根本的に異なるものであると認知し、1899年にラザフォードが区別していたアルファ線とベータ線からの類推でヴィラールの放射線を「ガンマ線」と名付けた[4]。放射性元素によって放出される放射線はギリシア文字を使って様々な物質を透過する力の順に名付けられた(アルファ線が最も透過しにくく、次いでベータ線、そしてガンマ線が最も透過しやすい)。ラザフォードはもうひとつのガンマ線がアルファ線やベータ線と異なる性質として、磁場によって曲げられない(少なくとも簡単には曲げられない。カー効果ポッケルス効果・応用例として光磁気ディスクも参照されたし。)ことにも注目した。

ガンマ線は最初はアルファ線やベータ線と同じように質量を持つ粒子と考えられていた。ラザフォードは初めはそれが非常に速いベータ粒子であると信じていたが、磁場で曲げられないことから電荷を持たないことが示された[5]。1914年にガンマ線が水晶の表面で反射されることが観測され、電磁放射線であることが証明された[5]。ラザフォードと彼の同僚であるエドワード・アンドレードはラジウムから出るガンマ線の波長を測定し、ガンマ線はX線に似ているが、より短い波長と(それゆえ)高い周波数を持つことを発見した(※ただし本記事前述の通り、ガンマ線とX線を波長により区別しないこともある)。やがてこれによって光子あたりより多くのエネルギーを持っていることが認知された。そしてガンマ崩壊は通常ガンマ光子を放出すると理解された。
ガンマ線源
放射性崩壊

放射性核種崩壊して質量陽子中性子の比率が変わっても、その原子核には過剰なエネルギーが残存している場合がある。このとき、残存しているエネルギーをガンマ線として放出することで原子核は安定に向かう。この現象をガンマ崩壊と呼ぶ。放出するガンマ線のエネルギー領域は核種によって様々である。核種によっては単一領域のガンマ線しか出さないものもあるが、一般的には複数領域のガンマ線を出す。同じ元素でも、同位体によって現象は下の例のように異なる。

81Kr この核種は 275.988 keV の1領域のみ放出。

88Kr この核種は最低 27.513 keV、最高 keV の88領域を放出。

割合で多い順から3種挙げると、2392.11 keV(34.6 %)、196.301 keV (25.98 %)、2195.842 keV (13.18 %) である。


雷雲

理化学研究所によれば、冬期の日本本州日本海沿岸地域において雷雲の活動に伴い自然放射線が増える現象を調査していたところ、雷雲から10 MeV(10?9 mSv)のガンマ線を40秒間観測し、雷雲が粒子加速器の働きをしていることが分かった。なお、雷雲からのガンマ線量は1回の胸部X線で浴びる放射線量の2億分の1程度と計算されている[6]は光核反応のトリガーになり得る[7]
天体

ガンマ線を放射する天体には超新星残骸パルサー活動銀河核等がある。また、発生機構は未解明であるがガンマ線バースト現象を起こす天体も発見されている。
他の放射線との比較 ヘリウム4の原子核であるアルファ粒子は一枚の紙すら通過できず、ベータ線の実態である電子では1cmのプラスチック板で十分遮蔽できるが、電磁波であるガンマ線では10cmの鉛板が必要となる。

アルファ粒子ベータ粒子と比べると透過能力は高いが、電離作用は弱い。

ガンマ線の遮蔽には、比重の重い物質(コンクリートなど)が使われる。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:33 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef