Β崩壊
[Wikipedia|▼Menu]
β−崩壊のイメージ。中性子( n {\displaystyle {\mathit {n}}\,} )が電子( e − {\displaystyle {\ce {{\mathit {e}}^{-}}}} )と反電子ニュートリノ( ν ¯ e {\displaystyle {\ce {{\bar {\nu }}_{\mathit {e}}}}} )を放出し陽子( p {\displaystyle \mathrm {p} \,} )になる。

原子核物理学



放射性崩壊
核分裂反応
原子核融合

放射性崩壊
アルファ崩壊 ・ ベータ崩壊 ・ ガンマ崩壊

その他の崩壊
二重ベータ崩壊二重電子捕獲内部転換核異性体転移クラスタ崩壊自発核分裂

放出過程
中性子放出陽電子放出陽子放出

捕獲
電子捕獲陽子捕獲中性子捕獲
RSPRp

高エネルギー反応
核破砕反応宇宙線による核破砕光分解

元素合成
恒星内元素合成
ビッグバン原子核合成
宇宙の元素合成

科学者
ベクレルベーテキュリーフェルミラザフォードバーバー

.mw-parser-output .hlist ul,.mw-parser-output .hlist ol{padding-left:0}.mw-parser-output .hlist li,.mw-parser-output .hlist dd,.mw-parser-output .hlist dt{margin-right:0;display:inline-block;white-space:nowrap}.mw-parser-output .hlist dt:after,.mw-parser-output .hlist dd:after,.mw-parser-output .hlist li:after{white-space:normal}.mw-parser-output .hlist li:after,.mw-parser-output .hlist dd:after{content:" ・\a0 ";font-weight:bold}.mw-parser-output .hlist dt:after{content:": "}.mw-parser-output .hlist-pipe dd:after,.mw-parser-output .hlist-pipe li:after{content:" |\a0 ";font-weight:normal}.mw-parser-output .hlist-hyphen dd:after,.mw-parser-output .hlist-hyphen li:after{content:" -\a0 ";font-weight:normal}.mw-parser-output .hlist-comma dd:after,.mw-parser-output .hlist-comma li:after{content:"、";font-weight:normal}.mw-parser-output .hlist-slash dd:after,.mw-parser-output .hlist-slash li:after{content:" /\a0 ";font-weight:normal}.mw-parser-output .hlist dd:last-child:after,.mw-parser-output .hlist dt:last-child:after,.mw-parser-output .hlist li:last-child:after{content:none}.mw-parser-output .hlist dd dd:first-child:before,.mw-parser-output .hlist dd dt:first-child:before,.mw-parser-output .hlist dd li:first-child:before,.mw-parser-output .hlist dt dd:first-child:before,.mw-parser-output .hlist dt dt:first-child:before,.mw-parser-output .hlist dt li:first-child:before,.mw-parser-output .hlist li dd:first-child:before,.mw-parser-output .hlist li dt:first-child:before,.mw-parser-output .hlist li li:first-child:before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child:after,.mw-parser-output .hlist dd dt:last-child:after,.mw-parser-output .hlist dd li:last-child:after,.mw-parser-output .hlist dt dd:last-child:after,.mw-parser-output .hlist dt dt:last-child:after,.mw-parser-output .hlist dt li:last-child:after,.mw-parser-output .hlist li dd:last-child:after,.mw-parser-output .hlist li dt:last-child:after,.mw-parser-output .hlist li li:last-child:after{content:")\a0 ";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li:before{content:" "counter(listitem)" ";white-space:nowrap}.mw-parser-output .hlist dd ol>li:first-child:before,.mw-parser-output .hlist dt ol>li:first-child:before,.mw-parser-output .hlist li ol>li:first-child:before{content:" ("counter(listitem)" "}.mw-parser-output .navbar{display:inline;font-size:75%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}.mw-parser-output .infobox .navbar{font-size:88%}.mw-parser-output .navbox .navbar{display:block;font-size:88%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}









ベータ崩壊(ベータほうかい、beta decay)とは、原子核放射性崩壊の一種で、放射線としてベータ線(電子)と反電子ニュートリノとを放出する。ベータ壊変(ベータかいへん)ともいう[1]

中性子 ? 陽子電子+反電子ニュートリノ」の遷移過程の右方向への遷移である。逆方向への遷移は電子捕獲(逆ベータ崩壊)と呼ばれる。
概要

ベータ崩壊においては、中性子陽子に変化する。中性子が陽子に変化する過程においては電子が放出され、この放出される電子のことをベータ線(β線)と呼ぶ。

ベータ崩壊にはベータ粒子(電子)と反電子ニュートリノを放出するβ−崩壊(負のβ崩壊[2]、陰電子崩壊)、陽電子と電子ニュートリノを放出するβ+崩壊(正のβ崩壊[2]、陽電子崩壊)、軌道電子原子核に取り込み電子ニュートリノを放出する電子捕獲二重ベータ崩壊二重電子捕獲 (double electron capture) が含まれる。

いずれのモードで崩壊しても、質量数は変化しない。つまり、ベータ崩壊は同重体を推移する現象である。
ベータ崩壊の理論

放射性物質の放つ放射線は、ヘリウム原子核であるアルファ線(α線)、電子であるベータ線(β線)、波長の非常に短い電磁波であるガンマ線(γ線)からなる。ところで、アルファ線とガンマ線のエネルギー分布は常に離散的な値を示すが、ベータ線だけはなぜかそのエネルギー分布は連続的な値を示す。この不可解なベータ線の連続的なエネルギーレベルを説明するためにベータ崩壊の理論が探索された。

まず、ベータ崩壊をする原子核は量子力学における状態として連続的な状態を取ると考えられたが、ベータ崩壊をする原子核の放出するアルファ線やガンマ線はやはり離散的なものであったことから否定された。次に、はじめはアルファ線やガンマ線と同一のエネルギーレベルで放出されたベータ線が、二次的に散乱されたり、吸収されるため連続的な値を取るのではないかと予想されたが、Ellis と Wooster によって否定された(1927年)。

ヴォルフガング・パウリは、新粒子の存在を仮定すればベータ崩壊の連続エネルギー分布が説明できることを指摘した。すなわち、ベータ崩壊においては電子と一緒に、何か普通の方法では観測できない未知の粒子がもう一つ放出されており、ベータ崩壊の前後における原子核のエネルギーの差は、電子とこの新粒子との間に分けられているため、ベータ線(電子)のエネルギーは0からある一定値までの連続的な任意の値を取るのではないかとした(1931年)。

これに対して、ニールス・ボーアは1934年に、ベータ崩壊のような原子核の内部の現象は原子スペクトルなどとは違って、もっと程度の高い本質的に新しい物理学の範囲に属するから、必ずしもエネルギー保存則は厳密にも成り立たなくても良いという仮説を提出し、パウリの新粒子説に反対した(エネルギー非保存仮説)[3]。しかしながら、その後このボーアのエネルギー非保存仮説は、実験及び理論の両面からその矛盾が指摘され、結局パウリの新粒子説が優勢となった。そのパウリの新粒子はニュートリノ(neutrino;中性微子)と名付けられ、ベータ崩壊の理論(弱い相互作用の理論)建設の端緒となった。詳細は「弱い相互作用」を参照

エネルギー保存則の観点から見ると、β+崩壊および電子捕獲は陽子の静止質量(938.27 MeV)が中性子の静止質量(939.57 MeV)よりも小さいため、真空中では本来発生し得ない事象である。この陽子と中性子の静止質量差よりも、崩壊前後の結合エネルギーの差が大きい(Q値が正である)核種のみ、これらの反応が起こりえる。
ベータ崩壊の各モード

各種ベータ崩壊のメカニズムを記す。ここでは電子を e − {\displaystyle {\ce {{\mathit {e}}^{-}}}} 、陽電子を e + {\displaystyle {\ce {{\mathit {e}}^{+}\,}}} 、陽子を p {\displaystyle \mathrm {p} \,} 、中性子を n {\displaystyle {\mathit {n}}\,} 、電子ニュートリノを ν e {\displaystyle \nu _{\mathrm {e} }\,} 、アップクォークを u {\displaystyle \mathrm {u} \,} 、ダウンクォークを d {\displaystyle \mathrm {d} \,} 、負電荷を持つWボソンを W − {\displaystyle \mathrm {W} ^{-}\,} と表記する。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:59 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef