二項展開
[Wikipedia|▼Menu]
二項係数を並べるとパスカルの三角形が構成される。各要素はその上にある2つの要素の和に等しい。

初等代数学における二項定理(にこうていり、: binomial theorem)または二項展開 (binomial expansion) とは、二項式を代数的に展開した式を表したものである。

定理の主張から、冪 (x + y)n を展開すると、n次の項 (n
k) xn−k yk (0 ? k ? n)[注 1]総和になる。ここでの係数 (n
k) を二項係数と呼び、正整数となる。

二項係数 (n
k) は2つの観点から解釈することができる。一つには ( n − 1 k − 1 ) + ( n − 1 k ) = ( n k ) {\displaystyle {\dbinom {n-1}{k-1}}+{\dbinom {n-1}{k}}={\dbinom {n}{k}}}

から帰納的に求めることができる。二項係数を並べるとパスカルの三角形となる。例えば ( x + y ) 2 = x 2 + 2 x y + y 2 , {\displaystyle (x+y)^{2}=x^{2}+2xy+y^{2},} ( x + y ) 3 = x 3 + 3 x 2 y + 3 x y 2 + y 3 , {\displaystyle (x+y)^{3}=x^{3}+3x^{2}y+3xy^{2}+y^{3},} ( x + y ) 4 = x 4 + 4 x 3 y + 6 x 2 y 2 + 4 x y 3 + y 4 . {\displaystyle (x+y)^{4}=x^{4}+4x^{3}y+6x^{2}y^{2}+4xy^{3}+y^{4}.}

二項係数 (n
k) は直接的、組合せ数学的には ( n k ) = n ! k ! ( n − k ) ! {\displaystyle {\binom {n}{k}}={\frac {n!}{k!(n-k)!}}}

である。これは有限集合から相異なる k個のを選ぶ組合せの総数を与える。
歴史

二項定理の特殊な場合については、古代より知られていた。紀元前4世紀ギリシャの数学者エウクレイデスは指数が 2 の場合の二項定理に言及している[1][2]。また、三次の場合の二項定理が6世紀のインドでは知られていた[1][2]

二項係数は相異なる n個のものから重複無く k個を選ぶ総数に等しくなるが、このことについては、古代ヒンドゥーで着目されていた。現在知られているもので最古のものは、ヒンドゥーの詩人ピンガラ(英語版) (c. 200 B.C.) による Chanda???stra で、それにはその解法も含まれている[3]:230。紀元後10世紀に評者ハラーユダ(英語版)はこの解法を今日でいうパスカルの三角形を用いて説明した[3]。この数が .mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num,.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0 0.1em}.mw-parser-output .sfrac .den{border-top:1px solid}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}n!/(n−k)! k! であることが、6世紀ごろのヒンドゥーの数学者には、おそらく知られていた[4]し、この規則についての言及を12世紀にバースカラ2世の表した文書 Lilavati に見つけることができる[4]

二項係数を組合せ論的量として表記した二項定理は、二項係数の三角形パターンについて記述した11世紀アラビア数学アル?カラジ(英語版)の業績にも見つけることができる[5]。アル?カラジはまた、原始的な形の数学的帰納法を用いて二項定理およびパスカルの三角形に関する数学的証明も与えている[5]。ペルシアの詩人で数学者のウマル・ハイヤームの数学的業績のほとんどは失われてしまったが、彼は恐らく高階の二項定理についてよく知っていた[2]。低次の二項展開は13世紀中国の楊輝[6]朱世傑[2]の数学的業績にも見られる。楊輝は遥か旧く11世紀の賈憲(英語版)の書の方法に従った(しかし、それらもまた今日では失われてしまった)[3]:142。

1544年にミハエル・シュティーフェル(ドイツ語版、英語版)[7]は "binomial coefficient"(「二項係数」)の語を導入し、(1 + a)n の (1 + a)n−1 での表し方を、「パスカルの三角形」により示した[8]ブレーズ・パスカルは、今日彼の名を冠して呼ばれる三角形の包括的な研究を論文(英語版)Traite du triangle arithmetique (1653) に著したが、これらの数の規則性はルネッサンス後期ヨーロッパの数学者たち(例えばシュティーフェル、タルタリアシモン・ステヴィンなど)には既に知られていた[8]

アイザック・ニュートンは有理数冪に対して成り立つ一般化された二項定理を示したと考えられている[9][8]二項級数を参照)。
定理の主張

定理によれば、x + y の冪を展開すると、冪指数 n を自然数として、 ( x + y ) n = ( n 0 ) x n + ( n 1 ) x n − 1 y 1 + ( n 2 ) x n − 2 y 2 + ⋯ + ( n n − 1 ) x 1 y n − 1 + ( n n ) y n {\displaystyle (x+y)^{n}={\binom {n}{0}}x^{n}+{\binom {n}{1}}x^{n-1}y^{1}+{\binom {n}{2}}x^{n-2}y^{2}+\cdots +{\binom {n}{n-1}}x^{1}y^{n-1}+{\binom {n}{n}}y^{n}} (1)

となる。この展開した式の係数 (n
k) を二項係数と呼び、正整数となる。この等式はしばしば二項公式
(ドイツ語版)あるいは二項(恒)等式とも呼ばれる。

x0 = y0 :=1[注 1]と定義すれば、全ての項を総和記号 Σ で一律に表示できる: ( x + y ) n = ∑ k = 0 n ( n k ) x n − k y k = ∑ k = 0 n ( n k ) x k y n − k {\displaystyle (x+y)^{n}=\textstyle \sum \limits _{k=0}^{n}{\dbinom {n}{k}}x^{n-k}y^{k}=\textstyle \sum \limits _{k=0}^{n}{\dbinom {n}{k}}x^{k}y^{n-k}} (2)


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:88 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef